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Abstract: The effect of airflow rate, biomass moisture content, particle size, and compactness on the
surface properties of biochar produced in a top-lit updraft gasifier was investigated. Pine woodchips
were studied as the feedstock. The carbonization airflow rates from 8 to 20 L/min were found to
produce basic biochars (pH > 7.0) that contained basic functional groups. No acid functional groups
were presented when the airflow increased. The surface charge of biochar at varying airflow rates
showed that the cation exchange capacity increased with airflow. The increase in biomass moisture
content from 10 to 14% caused decrease in the pH from 12 to 7.43, but the smallest or largest particle
sizes resulted in low pH; therefore, the carboxylic functional groups increased. Similarly, the biomass
compactness exhibited a negative correlation with the pH that reduced with increasing compactness
level. Thus, the carboxylic acid functional groups of biochar increased from 0 to 0.016 mmol g−1, and
the basic functional group decreased from 0.115 to 0.073 mmol g−1 when biomass compactness force
increased from 0 to 3 kg. BET (Brunauer-Emmett-Teller) surface area of biochar was greater at higher
airflow and smaller particle size, lower moisture content, and less compactness of the biomass.
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1. Introduction

Biochar can be produced from a wide variety of organic materials [1]. This carbon rich substance
can be used in various applications such as carbon sequestration, soil conditioning, and filtration of
pollutants from aqueous and gas media [2–5]. Initiatives to investigate new ways to produce biochar
have been implemented in many parts of the globe [1,6–8]. However, to date, slow pyrolysis is still
the most known method for biochar production that is characterized by the thermal conversion of
biomass in an oxygen-free atmosphere [9,10]. This process can take place at temperatures between
350 ◦C and 700 ◦C [1]. The operational parameters and biomass type/properties play an important role
in the surface chemistry of biochar. Extensive work has been carried out in the evaluation of pyrolysis
systems for the production of biochar with specific properties [1,11–13]. For example, Bagreev [14]
characterized biochar from sewage sludge. It was reported that chemical modification induced by
the variation of temperature caused modification to the chemical composition of the biochar that was
initially identified by an increase in pH. Similarly, Mukherjee [15] observed that the properties of
biochar can drastically vary when comparing freshly produced biochar with aged biochar.
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Biomass gasification has also been demonstrated as an alternative method to produce biochar [16].
However, common gasification processes produce little biochar compared to the amount of gases
generated [8]. Consequently, there is insufficient literature on the characterization of the surface
chemistry of this biochar. Top-lit updraft (TLUD) gasification is believed to have potential for biochar
production because of its relatively high yield of biochar (up to 39%) with relatively low energy
input [17,18]. Despite all of this, there is not sufficient literature focused on the surface chemistry and
the effect of the operational parameters and physical properties of the biomass in TLUD gasification
produced biochars. The characterization of biochars from TLUD gasification can be a major indicator
of the possible applications for the produced biochar [2].

The objective of this work was to investigate the effect of airflow rate, moisture content, particle
size, and biomass compactness on the surface properties of pine wood biochar produced in a TLUD
gasifier. The basic and acid functional groups were measured and correlated with the reaction
temperature to identify variations of biochar surface chemistry related to operational conditions. The
elemental composition of the biochar was evaluated as an indicator of the overall level of oxidation as
a result of the incomplete combustion of biomass. The surface charge of biochar at varying airflow
rates was also investigated.

2. Materials and Methods

Pine woodchips were gasified in a TLUD gasifier to generate biochar at different airflow rates
(8, 12, 16, and 20 L/min) as described by James [16]. Briefly, the gasification unit mainly consisted
of a 152-cm-high black iron tube with 10.1-cm diameter, which was loaded and ignited from the top
and air was injected from the bottom, and the pyrolysis front started moving downward leaving
biochar on the top and producing syngas. Once the peak reaction temperature was sensed by the
bottom thermocouple, the reaction was complete and stopped. Then, biochar was then collected and
analyzed after cooling. Biochar produced at 20 L/min under different biomass physical properties
was also evaluated, e.g., with varying particle sizes (from 2 to 30 mm), moisture contents (from 10 to
22%), and biomass compactness (from 0 to 3 kg), as presented in James [19]. The pH of the biochar
samples was determined by mixing 0.4 g of biochar in 20 mL of de-ionized water for 8 h [14,20]. The
resulting solution was filtered with Whatman® filter paper (Qualitative #1) to remove large particles
of biochar. Then, the final solution was filtered with nylon filters (0.2 µm). The pH of the solution
was measured using a bench pH meter (Model: UltraBasic U-10, Denver Instruments, Bohemia, NY,
USA). The Boehm titration method was implemented to determine the surface functional groups of the
biochar [21]. Four solutions (NaHCO3, Na2CO3, NaOH, and HCl) of 0.05 M were prepared. Fifty ml of
each solution was mixed individually with 1 g of biochar for 24 h. The final solutions were filtered
using the same filtration method as the pH analysis. Finally, the solutions were titrated with HCl
(bases) or NaOH (acid) solutions using methyl orange and phenolphthalein indicators, respectively.
The elemental analysis of biomass and biochar samples was determined using a CHNS/O (carbon,
hydrogen, nitrogen, sulfur and oxygen) elemental analyzer (PerkinElmer 2400, Branford, CT, USA).
Capsules of two grams of each sample were prepared with a tin capsule standard (PerkinElmer Mod.
Pk96 N2411255). The resulting capsules were placed in the analyzer by the autosampler. The elemental
composition of the pine woodchips was 47.90% carbon, 1.70% hydrogen, 0.30% nitrogen, 0.20% sulfur,
and 49.90% oxygen (calculated by difference) with an ash content of 0.57% [19].

The specific surface area of the biochars was calculated by the BET ((Brunauer-Emmett-Teller))
analysis technique that evaluates the isothermal nitrogen adsorption/desorption at −196 ◦C [22].
The samples were degassed for 12 h at 250 ◦C under vacuum before BET analysis. The anion exchange
capacity (AEC) of the biochar samples was determined according to Lawrinenko [23]. One gram
of biochar was mixed with 40 mL of de-ionized water and 2 mL of KBr (1 M) for 48 h. Then, the
biochar residue was filtered with Whatman® filter paper (Qualitative #1) and rinsed to achieve 5 µS
conductivity (Model: HI 9813-6, Hanna Instruments, Ann Arbor, MI, USA). Next, 2 mL of CaCl2 (2.5 M)
was added to the biochar slurry and mixed for 48 h. The concentrated biochar was then diluted with
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200 mL of de-ionized water; 10-mL of this solution was then filtered with Target2® nylon filters (0.2 µm)
and further diluted with 100 mL of di-ionized water. Bromide was detected from the final solution
using an Ion Chromatograph (Dionex 500, Thermo Fischer Scientific, Sunnyvale, CA, USA). The cation
exchange capacity (CEC) was measured based on Kloss [24] and Dumroese [25]. Initially, 2 g of biochar
and 40 mL of de-ionized water were mixed overnight. Then, the samples were filtered with Whatman®

filter paper (Qualitative #1). The washed biochar was placed in a flask with 20 mL of BaCl2 (0.2 M) and
mixed for 2 h. The final solution was filtered with Target2® nylon filters (0.2 µm). The concentrations
of Na, K, Mg, Ca, Al, Fe and Mn were measured via Inductively-coupled Plasma-Optical Emission
Spectrometer (PerkinElmer 8000, Waltham, MA, USA). AEC and CEC calculations were performed
following the methods described by Coleman [26].

Statistical multiple comparison analysis was performed to compare the effect of different levels of
treatments. A SAS® GLM (general linear models) procedure with a p-value < 0.1 was implemented.

3. Results and Discussion

3.1. The Effect of Airflow Rate on Biochar Surface Properties

Biochars produced at airflow rates ranging from 8 to 20 L/min were found to be mostly basic
(pH > 7.0). As a result, no acidic functional groups were detected on the surface by Boehm titration
characterization [19]. Table 1 presents the results of the pH and the basic functional groups of the
biochar when the airflow rate increased in the TLUD gasifier. In general, lower airflow rates resulted
in biochar with lower pH. However, no statistical difference in pH was found when analyzing all the
biochar samples. The basic functional group of the biochar increased with the airflow rate, which
significantly increased from 0.0175 to 0.115 mmol g−1. The increase in the basic functional group of the
biochar was correlated with the peak temperature of the gasification layer that increased from 661 to
840 ◦C (R2 = 0.78). With increasing airflow, the O/C atomic ratio of biochar was significantly reduced
from 0.14 to 0.1 which induced carbonization due to aromatization in which polycyclic aromatic
structures were formed leading to an increase in aromatic carbon concentration [27]. Similarly, Zhu [1]
performed microwave pyrolysis experiments of corn stover by increasing the reaction temperature
from 550 to 650 ◦C. The increase in temperature caused reduction in the O/C ratio of the biochar from
0.06 to 0.04 while the H/C ratio did not change. This suggested a more aromatic-based biochar due to
the increase in carbon content and reduction of oxygen (O) [4]. As a result, the basic functional groups
of biochar increased.

Table 1. Chemical properties of biochar from wood chips at varying airflows (moisture content 10%,
average particle size 7 mm, and biomass compactness 0 kg). BET: Brunauer-Emmett-Teller; CEC: Cation
Exchange Capacity; AEC: anion exchange capacity.

Airflow
(L/min)

Peak
Temperature (◦C)

pH of
Biochar

Basic Functional
Groups mmol g−1

AEC CEC BET Surface
Area m2 g−1 Atomic Ratio

cmol
kg−1

cmol
kg−1 H/C O/C

8 661.33 d 10.39 a 0.0175 c 1.38 a 3.43 b 56.0 0.27 a 0.14 a

12 743.00 c 11.99 a 0.02 c 1.03 b 3.03 b 239.2 0.26 a 0.10 b

16 798.33 b 10.49 a 0.0625 b 1.01 b 3.90 b 319.4 0.29 a 0.10 b

20 840.50 a 12.04 a 0.115 a 1.59 a 6.33 a 405.3 0.27 a 0.10 b

Different superscripts represent significant differences in the order of a > b > c > d.

The characterization of the biochar surface functional groups usually presents a combination of
carboxylic, lactone, and phenolic acidic groups [14,20]. However, in the analysis of biochar produced
at different airflow rates via TLUD gasification, no acidic functionalities were detected. This could be
attributed to the fact that the carbonization of biomass in a controlled oxygen-rich atmosphere usually
leads to the absence of acidic components on the surface of biochar when the reaction temperature
increases [21,28]. Contrary to this, Gomez-Sarranon et al. [29] and Otake et al. [30] reported that
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carbon-oxygen groups of acidic characters such as lactone and anhydride can be formed on the surface
of carbon materials after air oxidation. However, the temperatures used in both research work were
relatively low, 250 ◦C and 377 ◦C, respectively. Otake et al. [30] suggested that the air-oxidized chars
can present carboxylic acid groups based on the assumption that the hydrolysis of carboxylic anhydride
occurs in aqueous solutions. This carboxylic anhydride was formed at temperatures above 650 K and
carboxylic acids were only promoted at lower temperatures. Since the lowest temperature reported
in the present work was 614 ◦C, it was likely that no acidic functional groups were formed at higher
temperatures when the fixed particle size was tested. In addition, the predominant alkaline nature
of the produced biochar in the present study agrees with previously reported data [31]. Boehm [21]
reported that the oxidation of black carbon at 420 ◦C did not present acidic functional groups because of
the rapid carbonization of organic materials in the presence of oxygen. The BET surface area was also
found to be positively correlated with the peak temperature (R2 = 0.99) and with the basic functional
group concentration of biochar (R2 = 0.73). This suggests that the increase in peak temperature not only
promotes the basic functionality [31], but also enhances the porosity of the carbon-rich material [32].
Downie et al. [33] compared data of biochar produced at varying conditions, and found that the specific
surface area of biochar can be enhanced by the micro-porosity. Similarly, it was found that higher
reaction temperatures increased biochar porosity.

The results of the surface charge of the biochar are also presented in Table 1. The CEC of biochar
from wood chips increased from 3.43 to 6.33 cmole kg−1 when the airflow rate increased from 8 to
20 L/min. This increase in the CEC of the biochar can be associated with the combustion temperature
(R2 = 0.55) that increased with increasing airflow rate. Nguyen [34] carried out experiments to study the
effect of carbon decomposition of oak wood biochar produced with slow pyrolysis. The carbonization
temperature caused variations in the CEC of the biochar, which decreased from 13.1 to 8.9 cmole
kg−1 as the temperature increased from 350 to 600 ◦C. The increase in CEC in biochar from top-lit
updraft gasification can also be attributed to the degree of oxidation due to the partial oxidation of
the biomass. For instance, Lehmann [35] stated that biochar could have higher CEC due to long-term
natural oxidation. Biochar extracts from the Amazonian have been exposed to oxidation for centuries;
as a result, they present high CEC that can range from 0.79 to 21.3 cmol kg−1 [36]. The use of biomass
gasification for biochar production can represent more extreme oxidation of biochar that is due to
thermochemical reactions. On the contrary, natural oxidation is the result of exposure to biotic and
abiotic interactions [12]. In addition, the AEC of the biochar was found to significantly decrease from
1.38 to 1.01 cmol kg−1 when the airflow increased from 8 to 16 L/min, whereas it significantly increased
from 1.01 to 1.59 cmol kg−1 when the airflow was further increased from 16 to 20 L/min. The increase
in the AEC might be due to the increasing degree of oxidation presented by the H/C ratio reduction
from 0.29 to 0.27 when the airflow increased from 16 to 20 L/min. The CEC was positively correlated
with the AEC (R2 = 0.58). A similar correlation of the AEC and CEC was reported in a previous work
where biochar was produced from oak wood to test the physiochemical effects of aging on biochar [15].
The results indicated that increasing the pyrolysis temperature from 250 to 650 ◦C caused decrease in
the AEC from 4.9 to 4.5 cmol kg−1 and reduced the CEC from 39.9 to 10.2 cmol kg−1. Based on limited
data available in Table 1, there existed a strong positive linear correlation between CEC and basic
functional group (Functional group = 31.083CEC + 2.5018, R2 = 0.9215), but no correlation was found
between AEC and functional group. Because pH was not significantly different among all airflows, the
correlation was not considered pH dependent.

To compare with other techniques, Table 2 summarizes the properties of biochar from different
raw materials produced via pyrolysis and TLUD gasification. It is apparent that the TLUD gasification
with low reaction temperatures (small airflow) resulted in biochars of smaller BET surface area and less
surface charges than those of pyrolysis biochars. However, at high airflow (20 L/min), the BET surface
area of TLUD biochar was much greater than pyrolysis biochars, although surface charges were still
smaller. Regardless of airflow, TLUD gasification biochar from the present study was generally more
basic (with higher pH) than pyrolysis biochars. H/C and O/C ratios of the biochars were similar based
on the available data.
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Table 2. Properties of biochars produced under different conversion methods. BET: Brunauer-Emmett-
Teller; CEC: Cation Exchange Capacity; AEC: anion exchange capacity; TLUD: Top-lit Updraft.

Conversion
Method

Biomass
Type

Reaction
Temp. (◦C)

BET Surface
Area (m2/g)

pH

Surface Charge
cmol Kg−1

H/C O/C Ref.
CEC AEC

Pyrolysis Pine 650 285 7 11 4.5 N/A N/A [11]
Pyrolysis Oak 650 184 8.6 18.4 N/A N/A 0.3 [15]
Pyrolysis Corn stover 700 N/A 10 9.0 5 0.29 N/A [28]
Pyrolysis Red oak 600 N/A 10 9.8 2.6 0.31 N/A [28]

TLUD
gasification Pine 661 56.0 10.39 3.43 1.38 0.27 0.14 *

TLUD
gasification Pine 840.50 405.3 12.54 6.33 1.59 0.27 0.10 **

N/A—value not available in the reference; * results of this study at 8 L/min, particle size 7 mm, 10% moisture
content, not compacted biomass; ** results of this study at 20 L/min, particle size 7 mm, 10% moisture content, not
compacted biomass.

3.2. The Effect of Biomass Moisture Content on Biochar Surface Properties

The pH of the biochar was significantly reduced from 12.0 to 7.43 when the moisture content of
the biomass varied from 10 to 14% (Figure 1). However, further addition of moisture did not encourage
the reduction of pH of the biochar. As a result, the variation in moisture content did not show acid
functional groups in the biochar. Moreover, higher moisture content resulted in more basic functional
groups that significantly increased from 0.115 to 0.15 mmol g−1 (Table 3). The basic functional group
exhibited a correlation with the reaction temperature (R2 = 0.66) and pH (R2 = 0.81). This effect can be
associated with the fact that the O/C atomic ratio was also significantly reduced from 0.1 to 0.068 when
the moisture content increased from 10 to 14%, which was also related to more aromatic compounds
in the biochar [32]. The O/C atomic ratio was correlated with pH (R2 = 0.87) that increased at higher
O/C ratios. In addition, the H/C ratio was also positively correlated with pH (R2 = 0.97). All of these
indicate that the addition of moisture to the biomass promoted the reduction of the oxidation effect
that resulted in lower pH levels. Thus, it caused an increase in the basic functional group of biochar.
The BET surface area of biochar was also reduced from 405.3 m2 g−1 to 352.8 m2 g−1 because of the
increase in the moisture content of the biomass (R2 = 0.84). This reduction can also be attributed to the
inhibition of oxidation due to the excess of moisture.
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Table 3. Atomic ratios and basic functional groups of biochar from pine woodchips produced at varying
biomass moisture contents. BET: Brunauer-Emmett-Teller.

Moisture Content (%)
Basic Functional Groups

(mmol g−1)
BET Surface Area Atomic Ratios

(m2 g−1) H/C O/C

10 0.115 c 405.3 0.271 a 0.100 a

14 0.135 b 380.3 0.200 a 0.068 b

18 0.137 a-b 384.0 0.200 a 0.065 b

22 0.150 a 352.8 0.186 a 0.075 b

Different superscripts represent significant differences in the order of a > b > c.

3.3. The Effect of Biomass Particle Size on Biochar Surface Properties

Figure 2A shows that biochar from particles with 2 mm size had a pH of 1.1, which increased
to 12.0 when increasing the average particle size to 7 mm. However, further increasing the particle
size from 7 to 30 mm led to reduced pH from 12.0 to 2.3. Likewise, the reaction temperature was
strongly positively correlated with the pH (R2 = 0.91) (Figure 2B). Therefore, the variation in particle
size and temperature not only contributed to the changing pH of the biochar, but they also affected
its surface chemistry because of the extreme pH levels, as presented in Table 4. The carboxylic acidic
functional groups of biochar decreased from 0.012 to 0 mmol g−1 when the particle size increased
from 2 to 7 mm, whereas further increasing the particle size from 7 to 30 mm caused an increase of
carboxylic functional groups from 0 to 0.012 mmol g−1. Opposite to this, the basic functional group
was maximum at the particle size of 7 mm and decreased to 0.012 mmol g−1 at smaller or larger
particles. Acidic biochars exhibited carboxylic and basic functionalities which were correlated with the
reaction temperature with R2 of 0.88 and 0.73, respectively. This was different from the airflow and
moisture content experiments that only had the basic functional groups. In addition, pH was found to
be correlated with the carboxylic and basic functional groups with R2 of 0.96 and 0.63, respectively.
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Variations in the carbonization temperature have been observed to play an important role in the
surface chemistry of biochar, and these changes can be initially identified by measuring the pH of
the carbonized materials. This effect has been widely reported in the literature [11,37]. The increase
in peak temperature from 657 to 840 ◦C when the particle size increased from 2 to 7 mm indicated
an increase in the oxidation of the biomass (Figure 2B). This degree of oxidation can be observed in
the decrease of the H/C atomic ratio from 0.35 to 0.27 that suggested a decrease in polar functional
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groups (e.g., carboxylic) [1]. Likewise, it was evident that the acidic condition of the biochar was not
achieved at 7 mm particle size (pH = 12.04). In the opposite way, the increase in particle size from 7 to
30 mm resulted in lower peak temperatures from 840 to 614 ◦C. Consequently, the carboxylic functional
group increased, and the H/C ratio raised from 0.27 to 0.54 which was also correlated with the reaction
temperature (R2 = 0.72). Likewise, the reaction temperature was correlated with the BET surface area
(R2 = 0.88, which was reduced from 405.3 to 6.2 m2 g−1 as the average particle size increased from 7 to
30 mm (Table 4). Similar behavior on the surface chemistry was reported by Kim et al. [4] who prepared
biochar for aqueous metal removal experiments. The results showed that, as reaction temperature
decreased from 600 to 300 ◦C, the pH of the biochar was reduced from 10 to 8.2. Thus, the H/C ratio of
the biochar increased from 0.3 to 0.96. Overall, it was observed that larger biomass particles promoted
a higher level of aromatization since the O/C ratio decreased from 0.11 to 0.09. This can be attributed to
the increased density of individual particles since the oxidation reactions are limited to the external
surface of the biochar particles [38].

Table 4. Chemical properties of biochar from wood chips produced with varying particle sizes.
BET: Brunauer-Emmett-Teller.

Avg. Particle Size (mm) Functional Groups BET Surface Area Atomic Ratios

Carboxylic (mmol g−1) Basic (mmol g−1) (m2 g−1) H/C O/C

2 0.012 a 0.059 b N/A * 0.356 a-b 0.113 a

7 0 b 0.115 a 405.3 0.271 b 0.100 a

17 0.011 a-b 0.026 c 50.9 0.382 a-b 0.070 b

30 0.012 a 0.012 c 6.2 0.545 a 0.088 a-b

N/A—Not Available. * BET surface area analysis was not performed due to high tar content in the biochar. Different
superscripts represent significant differences in the order of a > b > c.

3.4. The Effect of Biomass Compactness on Biochar Surface Chemistry

Figure 3A shows the correlation between pH and biomass compactness (R2 = 0.91). As the
biomass compactness increased from 0 to 3 kg, the pH of the biochar decreased from 12.0 to 0.95. The
reaction temperature was positively correlated with pH (R2 = 0.69), Figure 3B. As a result, it was
found that the carboxylic functional groups of the biochar increased from 0 to 0.016 mmol g−1, while
the formation of basic functional groups was surpassed from 0.115 to 0.073 mmol g−1 (Table 5). The
variation in individual functional groups of biochar was highly correlated with reaction temperature
and pH. The carboxylic and basic functional groups showed R2 of 0.91 and 0.95, respectively, as the
reaction temperature increased. Similarly, pH was correlated with the carboxylic and basic functional
groups with R2 of 0.85 and 0.87, respectively. The increase in biomass compactness meant that more
biomass was available per unit volume within the TLUD gasifier. Consequently, relatively less air was
available for the incomplete oxidation reactions, which resulted in lower reaction temperatures that
led to a decrease in BET surface area (from 405.3 to 191.8 m2 g−1). The change in the proportion of
biomass relative to the available oxygen can also be observed in the O/C ratio that was significantly
reduced from 0.1 to 0.063 when the biomass was compacted from 0 to 1 kg. The reduction in the
O/C ratio indicated that the reactions were driven in a less oxidative atmosphere. Moreover, further
compacting the biomass (>2 kg) did not significantly affect the O/C ratio, which could be attributed
to an insignificant change in the peak reaction temperature. The decrease in O/C ratio in biomass
pyrolysis processes represents carbonization due to aromatization and dehydrogenation reactions that
commonly occur due to changes in the reaction temperature [4]. Therefore, in the TLUD gasification
process, the decrease in biochar O/C ratio might be further encouraged by the reduced oxygen relative
to the amount of biomass.
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Table 5. Chemical properties of biochar from wood chips produced with varying biomass compactness.
BET: Brunauer-Emmett-Teller.

Biomass Compactness (kg) Functional Groups BET Surface Area Atomic Ratios

Carboxylic (mmol g−1) Basic (mmol g−1) m2 g−1 H/C O/C

0 0 b 0.115 a 405.3 0.271 a-b 0.100 a

1 0.004 b 0.093 a 266.7 0.246 b 0.063 b

2 0.011 a-b 0.081 a 281.9 0.248 a-b 0.067 b

3 0.016 a 0.073 a 191.8 0.331 a 0.070 b

Different superscripts represent significant differences in the order of a > b.

In previous studies, TLUD gasification was demonstrated as a feasible alternative method for
biochar production under varying reaction conditions and biomass physical properties [16,19]. The
yield of pine woodchips biochar varied from 16.2 to 27.1% when the airflow increased from 8 to
20 L/min [16]. Biomass particle size (2 to 30 mm), moisture content (10 to 22%), and compactness
(0 to 3 kg) also showed significant impacts on biochar yield, which ranged from 12.2 to 21.8%, 9.9
to 12.0%, and 12.2 to 17.0%, respectively [19]. The production of biochar through biomass TLUD
gasification presents a potential implementation for making activated carbon and catalyst support.
This is because the high degree of oxidation that under specific gasification conditions could lead to
carboxylic biochars. In addition, the manipulation of surface characteristics of biochar linked to the
operational conditions and biomass properties could produce biochars for different applications, such
as wastewater treatment, soil amendment, and heat and power generation.

4. Conclusions

The effect of operational parameters and biomass physical properties on biochar surface properties
was investigated. When the airflow rate increased, the BET surface area and basic functional groups
of biochar also increased due to increases in reaction temperature, but no acidic functional groups
were observed because of the oxidative nature of the process. The CEC of biochar also increased
when the airflow rate increased, driven by a higher degree of oxidation in the top-lit updraft gasifier.
The variations in the physical properties of the biomass were found to significantly affect the surface
chemistry of the biochar. The increase in moisture content resulted in lower biochar pH and small BET
surface area due to reduced oxidative effects in the reactor. Furthermore, the increase in woodchip
particle size reduced the BET surface area of biochar and initially increased the pH of biochar, but
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further increase in particle size above 7 mm caused lower pH. As a result, the carboxylic functional
groups reduced when the particle size increased to 7 mm, but increased for larger particles. The
basic functional groups had an opposite trend versus particle size. Likewise, the increase in biomass
compactness caused a decrease in the pH and smaller BET surface area of biochar because of less
available air for combustion relative to the amount of biomass in the gasifier chamber, which caused
less aggressive oxidation. Therefore, increase in compactness increased the carboxylic functional
groups and reduced the basic functional groups.
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