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Abstract: In recent years, demographic growth has caused cities to expand their urban areas, increas-
ing the risk of overheating, creating insurmountable microclimatic conditions within the urban area,
which is why studies have been carried out on the urban heat island effect (UHI) and its mitigation.
Therefore, this research aims to evaluate the cooling potential in the application of strategies based
on biomimicry for the microclimate in a historical heritage city of Panama. For this, three case studies
(base case, case 1, and case 2) of outdoor thermal comfort were evaluated, in which the Envi-met
software was used to emulate and evaluate the thermal performance of these strategies during March
(highest temperature month) and October (rainier month). The strategies used were extracted from
the contrast of zebra skin, human skin, evaporative cooling, and ant skin. The results showed a
reduction of 2.8 ◦C in the air temperature at 11:00, the radiant temperature decreased by 2.2 ◦C, and
the PET index managed to reduce the thermal comfort indicator among its categories. The importance
of thinking based on biomimicry in sustainable strategies is concluded; although significant changes
were obtained, high risks of discomfort persist due to the layout and proximity of the building.

Keywords: biomimicry; biomimetics; urban heat island; exterior thermal comfort; equivalent physio-
logical temperature (pet)

1. Introduction

In 2018, 55% of the world’s population lived in urban areas, and it is estimated that
by 2050 it will increase to 68% [1]. This rapid population increase is the cause of the
microclimate in urban regions and will cause an increase in air temperature. Thus, cities
and urban areas will be much warmer than nearby rural areas; this phenomenon is known
as the urban heat island (UHI) [2]. The UHI can influence people’s health due to thermal
stress when there is no environment in buildings and public spaces that provides thermal
comfort to their occupants. This increases energy consumption to mitigate high indoor
temperatures through air conditioners in buildings.

Panama City does not escape from this situation since it exhibits a particular pattern
that concentrates the population in the capital and surrounding areas. In 2010, 65% of the
country’s total population lived in urban areas, an action that is expected to increase by
300% by 2050. Historically, the evolution of the capital has been constituted by a vertical
development and a closed core of tall buildings with designs sustained by the frequent use
of electricity, especially in refrigeration and air conditioning [3].

There are various bioclimatic strategies to mitigate UHI used in urban areas, either by
increasing green areas on streets or avenues by studying the effects of vegetation, albedo
surface, and orientation of buildings. Such is the case of Tehran city, evaluating different
models (the base that represents the current situation, the green cover that covers 50% of
vegetation, cold roof model, increasing the roof albedo from 0.3 to 0.6, cold pavement model
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increasing the albedo for pavement and concrete) and the orientation model comparing
the southeast orientation with the southwest [4]. Additionally, considering ecological roofs,
cold pavements, and cold roofs that allow sunlight reflection. All these strategies are
applicable, but it is essential to emphasize that there is a lack of knowledge related to the
changing conceptualization of nature and how this can influence urban planning [5].

Like the design based on an understanding of the connection of people with nature
called biophilia, GIS (geographic systems information) techniques were used to determine
specific areas, sites, and buildings that could be identified as natural sites in the city and
geospatial techniques of mapping biophilic cities in Wellington, New Zealand, while a
framework of biophilic urbanism was designed allowing the identification of strategic
locations facilitating more effective experiences with urban nature and its relevance in
other urban contexts [6].

Panama has limited energy resources to meet the growth in demand, and national
resources such as wind and solar energy generate important contributions, but only in
the long term. Besides, the behavior of the intermittent nature of these energy sources
requires considerable support that represents large investments [3]. Evaluations have
been performed in Panama considering the bioclimatic of the site for building strategies to
assure indoor thermal comfort [7,8], and even to reduce energy consumption due to air
conditioning [9], reaching promising results. For this reason, due to scarce resources and
because conventional practices are no longer sufficient to solve the problem, it is necessary
to change the design thinking and find the most efficient way to solve the problems as
nature does, using new strategies based on biomimetics. A recent local study presents a
proposal for a multidisciplinary approach and discusses its implementation in Panama [10].

Biomimetics can be defined basically as imitation engineering that combines biology
and engineering whose goal is sustainability for human development; it should not be
confused with the term biomorphism, which is dedicated to the reproduction of organic
forms, while biomimetics is responsible for the study of the behavior of nature and how it
has evolved over 3.8 billion years.

The inspiration of biomimetic strategies can be represented in the appearance, behav-
ior, shape, or structure of a plant, animal, bacteria, insect, and fungi, as well as mechanisms
such as the sweating process-based amygdala. In general, they are referred to as “pin-
nacles”. Darai Prabhakaran [11] shows how biology can provide bio-inspired ideas in
developing materials for buildings, according to the levels of biomimetics. Studies on the
properties of materials and how they can influence the building envelope are relevant
examples in appearance. Such is the case of the special retro-reflective properties present in
flower petals and how they can reflect the heat by radiation in between nearest buildings
leading to a reduction of the UHI effect [12]. At the architectural level, in 2019 [13] a study
was carried out for a 20-story building in Pakistan, a place characterized by its tropical
climate. Generally, glazed buildings offer visual comfort through natural lighting and an
excellent view, but they get the solar heat gain. For this, dynamic facades are traditionally
created that completely block the sun, but at the same time the visibility to the outside is
compromised. The latter is an example of a biomimetic adaptive façade design, with the
aim of controlling solar gain without compromising visibility. It is created by means of a
module, in which the physical, physiological form and the behavior of the Oxalis oregana
leaf were imitated. This plant has the ability to track the intensity of sunlight through
photoreceptors, its leaf can change from a vertical position (when there is excess light) to a
horizontal position (lack of light) in just six minutes, with the objective of enabling more
photosynthesis. These qualities were applied to the shading device in such a way that it
could change its angles relative to those of the sun.

For the results, the calculations were made by separating the building into three
zones in Revit, obtaining the following results: For zone A: it consumes 1,407,779 kWh
of electricity per year, of which 60% is from the HVAC; after the update a 27% reduction
in HVAC consumption is recorded. For zone B: there is a consumption of 1,471,818 kWh
of electricity per year, where 62% belongs to the air conditioning system, achieving a
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reduction of 32%. For the last zone C: it consumes 1,454,209 kWh of electricity per year, in
it the energy consumption by air conditioning is reduced by 29%. In addition to the energy
reduction, it was shown that 50% of the floor plan is in visual comfort with an appropriate
range of 500–700 lux. This model can be applied to any type of glass building in a hot
and humid climate in order to increase its energy efficiency and even combine them with
photovoltaic modules integrated into the façade for self-generation.

Another bio-inspired alternative is passive cooling, where Ali Chesmehzangi and
Ayotunde Dawodu [14] carried out a SWOT analysis on how passive cooling through a
series of indicators such as health and energy, among others, can have its advantages and
disadvantages for urban planning at the macro, meso and micro level.

After exposing the above, this research focuses on mitigating the urban heat island
effect and improving the comfort of public spaces (outdoor comfort) based on urban-scale
strategies inspired by nature. This inspiration is based on the evaluation of different types of
mechanisms or processes through which organisms manage to regulate their temperature.
The proposed strategies are evaluated through dynamic simulation for the critical summer
month (March) and the critical rain month (October) using Envi-met software in a case
study in a historic urban development on the coast of Panama in an approximate area of
66,896 m2.

2. Materials and Methods

For this research, the methodology adopted is based on the problem-based approach
(Figure 1), built upon previous work. It will be developed in the following sections.
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2.1. Case Study

The case study considers the historical urban development in Panama City named
Casco Antiguo (coordinates 8◦57′09′′ N 79◦32′06′′ W). The construction of the Casco was
developed under Spanish Crown building regulation in the 16th century, in the mainland
territories (Laws of India) created to organize newly conquered lands from an urban point
of view [15].

Currently, the Casco Antiguo is considered a World Heritage Site by UNESCO and is
protected by the regulations for preserving historical heritage as a National Monumental
Complex. Within the Casco Antiguo, the buildings vary between three and four stories,
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and the narrow streets of at least 4.5 m to 9 m stand out. The thermal behavior of the urban
development within the Casco Antiguo is studied through a section-frame of 290 m (x axis)
by 226 m (y axis), as shown in Figure 2. This section-frame encompasses the Metropolitan
Cathedral and the Main “Square Mayor” surroundings, located near the shores of Panama
Bay. This area is classified as a climatic zone 3 (LCZ 3) according to Stewart and Oke, due
to its type of construction [16], which is described as a dense area of low rise buildings
of one to three stories with few trees and primarily covered by pavement and building
materials such as concrete, brick, tiles, stone, and cobblestone. In addition, building types
are primarily for residential and commercial use.
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Figure 2. (a) Satellite view of the Casco Antiguo; (b) Studio cutout view (290 × 226 m).

Regarding the materials of the buildings, most of their roofs are composed of colonial
tiles, slabs, wood, although some are zinc with a red antioxidant coating for roofs. The
material of the facades varies from calicanto, concrete, clay blocks (Figure 3). The sidewalks
are made of concrete, and the streets are mostly red cobblestones and some sections of
basalt cobblestones. Table 1 shows materials properties for the case study, which will be
used in the simulation (referred here as the base case).
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Table 1. Materials for the current case/cutout base.

Elements Materials Envi-Met Software Library Data [17] Emissivity Reflectivity

Pavements
Red cobblestones Brick road (red stones) 0.9 0.3

Concrete floor Concrete pavement gray 0.9 0.9
Basalt floor Basalt brick road - 0.8

Roof Terracotta Roofing: Terracota 0.9 0.5

Vegetation
Low leafy trees Spherical/Heart-Shaped (5 m), dense - 0.2
Tall leafy trees Spherical/Heart-Shaped (15 m), dense - 0.2

Clay floor Loamy soil - 0.2

Moreover, thermal comfort indicators were employed to evaluate the proposed strate-
gies’ influence on the exterior comfort, such as air temperature, mean radiant temperature,
Tmr, and the comfort index PET (equivalent physiological temperature). For this, the
hottest month of the year (March) and the rainiest month (October) were considered and
evaluated at the critical hours of 11:00, 15:00, and 16:00. Finally, the study was carried out
in the Envi-met microclimate software.

The case study (or base case) was evaluated first through simulation to determine
the baseline for each of the comfort indicators employed. Results obtained showed that
pedestrians are not in comfort due to the lack of green areas, the existence of urban canyons,
building materials for facades and streets. Therefore, this problem will be considered for
identifying and searching for solutions that allow mitigating this problem.

2.2. Identification and Selection of Biological Analogies

The identification process begins with the exploration model considering heat regu-
lation as a primary problem as the methodology proposed in [18]. Thus, the biomimetic
design is based on four initial functions: gain, dissipate, transfer, and prevent (Figure 4).
The exploration model for heat regulation is structured in four levels. The first level de-
scribes the functions (for example, heat gain). The second level highlights how each of the
functions is carried out (for example, absorbing radiation). The factors exhibited by the
highlighted processes are at the third level (for example, color). The fourth level represents
the pinnacle or biological analogy with a particular function, such as the beetle to gain heat.
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The design challenges chosen are based on preventing solar heat gains in the area stud-
ied by reducing the irradiation and increasing the heat dissipation to avoid accumulation
in the buildings and streets (Figure 5).
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“Prevent heat gain” to avoid heating are characteristic of some species that can be
accomplished either through their morphology, physiology, or behavior. The selected
process is to minimize solar radiation, in which reflectance and shadows are important
factors. Thus, for this design challenge, the selected representative pinnacles are the
Saharan ant (reflectance) and the trees (shadows).

The ant is considered the pinnacle that best fulfills the reflectance process and presents
values among the highest reflectivities. In our exploratory diagram, the trees minimize
solar radiation by increasing the shadow area and are an applicable pinnacle in software
for simulation.

“Increase heat dissipation” to remove excessed heat from surfaces is a common
characteristic of species called thermoregulation, which can be performed either by mor-
phology, physiology, or behavior. Thus, for this design challenge, the selected processes
are: (1) improve convection due to coloration in the zebra, which is the selected pinnacle,
and (2) enhance evaporation to cool, just as human skin does through sweating.

Table 2 represents a summary of the selected pinnacles that serve as a quick guide
to knowing the principle of each species and its main characteristics, and its objectives in
studying design challenges. In which he demonstrates how the zebra and human skin
represent the principles and mechanisms of heat dissipation and the ant of the Sahara and
the trees the prevention of irradiation.

Table 2. Summary of the Pinnacles Analysis.

Pinnacles Strategy Mechanism Fundamental Principles Main Feature

Zebra Black and white streaking
causes a temperature

differential [19,20].

Convective currents are
caused by increasing

evaporation.

High convection and
evaporationArrangement of animal

stripes for heat regulation

Human skin Reaction by stimulation of the
hypothalamus and the body’s

heat sensors [21,22]

Allows the loss of heat by
conduction and evaporation

of sweat

High convection and
evaporationSweating or perspiration for

heat regulation

Saharan ant High reflection in the NIR
range and emissivity in the

NIR [23]

Reflection of thermal
radiation and high emissivity

to release excess heat

High reflectivity and
emissivitySilver hairs with triangular

structure

Trees Vegetation cover to increase
shadows

Reduce the areas of exposure
to irradiation, improve

transpiration [24]

ShadesPlant properties: foliage
density, roughness, leaf clarity,

thickness.

Furthermore, Figure 6 shows the imaginary pinnacles marked in orange and green for
the two challenges, dissipation and prevention, respectively. The concept of an imaginary
pinnacle is introduced to represent a pinnacle that possesses all the dominant characteristics
of both pinnacles chosen for each design challenge in all seven categories (process, flow,
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adaptation, scale, environmental context, morphological characteristics, and materials char-
acteristics). The most relevant aspects of each pinnacle at each category are marked with
an “X”; the imaginary pinnacle will then inherit the superposed aspects of both pinnacles.
For each category, the dominant characteristics determine the aspects to be considered:
implemented process (e.g., improve convection), flow strategy (passive or active), type of
adaptation (e.g., physiological), performance scale (e.g., macro), environmental context
(e.g., tropical), morphological characteristics (e.g., adjacent), and material characteristics
(e.g., elastic).
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Figure 6 corresponds to the design path matrix, which corresponds to the connections
of the two imaginary pinnacles for the heat dissipation and prevention challenges. This
matrix has the purpose of finding the dominant characteristics to realize the biomimetic
design concept. The blue-dotted circles marked the features that have the best agreement
among both imaginary pinnacles. The greater the agreement between characteristics, the
more dominant it becomes.

The design path matrix for challenges shows the following characteristics and proper-
ties relevant to the design concept:

• Passive flow for dissipation and prevention of irradiation;
• For both challenges the scale is relevant;
• The arid and tropical environmental context are considered as most important;
• The morphological characteristic adjacent (or grouped) and pigmented have a greater

relationship between the challenges;
• In material characteristics, reflectivity and emissivity describe and work best for both

challenges;
• Low thermal conductivity.

2.3. Proposed Designs and Simulation

According to the design path matrix (Figure 7), two design cases are proposed. (1) First
case (case 1): a coating with high reflectivity and emissivity is applied on the roofs emulat-
ing the same properties of the Saharan ant, but with an adjacent or grouping behavior. That
is, half of the roof is coated, and the other half remained as the original roof surface. The
latter is done interleaved to create a temperature difference, and therefore, the convective
currents that will drive the heat evaporation and dissipation as occurring with the zebra
(Figure 7). Moreover, trees with dense, rough foliage and light-colored leaves are added to
reduce the areas exposed to irradiation and improving transpiration in the area. (2) Second
case (case 2): it combines case 1 with a porous pavement with a slight increase in albedo.
In this way, a certain amount of incident radiation is reflected, and the evaporation is
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greater and faster than conventional flooring. Finally, water sources are added, promoting
evaporative cooling, just as our body loses heat and regulates temperature.
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respective surface temperature variations (b) [18–20].

The meteorological input data for the software Envi-met GmbH (45136 Essen, Ger-
many) [17] were taken from CLIMdata Solargis © service shown in Table 3, the most critical
months of the summer season (March) and the rainy season were selected (October) for the
dynamic simulation of the base case and the proposed cases. Additionally, the vegetation
used in the base model was taken from the Envi-met Database Manager that corresponds to
Spherical/heart shaped (5 m and 15 m) dense trees with a reflectivity of 0.2 located in both
squares; they were also used in both case studies in the addition of more trees.

Table 3. Monthly meteorological critical values.

Months Tmax (◦C)
Hour

Tmin (◦C)
Hour

HRmax (%)
Hour

HRmin (%)
Hour

Wind
Speed (m/s)

Wind
Direction

(◦)

January 35
15:00

23.9
6:00

94
6:00

44
15:00 5.9 114

February 34.6
15:00

22.2
6:00

93
6:00

40
15:00 5.6 60

March 35.6
15:00

24.9
6:00

73
6:00

36
16:00 5 350

April 35.3
16:00

24.8
6:00

82
24:00

44
16:00 2.8 117

May 34.8
15:00

24.5
6:00

90
6:00

53
16:00 3.9 78

June 32.8
15:00

23.4
6:00

94
6:00

58
15:00 2 92

July 35.5
16:00

24.3
6:00

97
7:00

49
16:00 1.8 116

August 34.3
15:00

24.1
6:00

95
5:00

52
15:00 4.9 118

September 32.5
15:00

23
6:00

98
24:00

60
16:00 3.1 116

October 32.5
15:00

23
6:00

96
6:00

62
14:00 4.4 90

November 32.9
15:00

23.7
6:00

94
5:00

61
13:00 9.2 73

December 34.3
15:00

24.6
6:00

94
7:00

50
16:00 6.7 26
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2.3.1. Case 1

Modifications were made to the base case, mainly on the roof; a reflective coating
replaced the last layer composed of terracotta. Figure 8 shows the outermost layer of the
roof with a thickness of 0.01 m, which, together with the other two terracotta layers, has a
total thickness of 0.30 m.
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Figure 8. Schematic of case 1 developed in Envi-met.

The simulation results for the base case evidenced certain zones with a higher tem-
perature than others (presented later in Section 3), and thus, the following is considered:
Six trees were placed, two in the Square Cathedral, two in the Square Herrera, and the
others in a small space for recreation inside a building. The trees placed in both squares
are heart-shaped with a total height of 15 m (trunk and dosel). However, those inside the
building are of the same type, but with a height of 5 m, in addition to placing areas with
grass in the Square Cathedral and building. The soil remained the same as in the base case.

2.3.2. Case 2

For the construction of case 2, certain characteristics in its design were kept the same
as the case 1, such as: the reflective ceiling with the bio-inspired spacing in the zebra stripes,
the reflectivity of the Saharan ant, and the shading distribution of trees and lawns. The
additional properties included were water fountains both in the cathedral square with
two fountains and the Herrera square with a central fountain. The fountains have a water
jet height of 4 m (considered by default in the Envi-met library of the Database Manager
plugin). Besides, water sprays were added in the critical zones among the streets.

The spray is at the height of 3 m providing the atomized water for cooling purposes
(Figure 9).

The red brick pavement of the streets (base case) was also replaced by a porous
pavement (taken as default from the Envi-met library) to increase evaporative cooling
thanks to its water retention. This pavement has an albedo greater than 0.1 with respect to
the bricks of the base case (0.3).

To evaluate both the comfort indicators levels and distribution, the results are pre-
sented using maps of the section-frame of the Casco Antiguo, organized as shown in
Figure 10. For a better interpretation of the results obtained for both cases and to be able to
determine a more precise description of the maps shown, in Figure 10, the vertical lines
(A,B,C,D,E) represent the streets between the buildings, where the comfort of pedestrians
at 1.5 m height in these areas is investigated. The horizontal lines (F,G,H,I) indicate the
streets of the section-frame shown, and the numbers (1,2,3,4) represent the blocks. Finally,
the areas in blue represent the areas of the squares (Cathedral and Herrera squares) with
the same purpose mentioned above.
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3. Results Analysis and Discussion

This section shows the results obtained for each parameter (air temperature, mean
radiative temperature, and PET). The values distribution for each parameter is presented
first via maps at 2.5 m, explained using Figure 10. The average value for each map is then
compared among each of the cases, presented in tables.

3.1. Air Temperature

Results for the air temperature distribution in each case for March are presented
in Figure 11. It can be seen that in the base case, the Herrera square area is around
34.36–35.32 ◦C, the Cathedral square (34.60–35.56 ◦C), the Streets G (1, 2 and 3) and F range
between 34.36–35.32 ◦C, streets H and I from 34.36–34.84 ◦C. In case 1, presented Herrera
square values from 34.18–34.91 ◦C, Cathedral square (34.43–35.40 ◦C), streets G (1, 2 and 3)
and F presented air temperatures between 34.18 ◦C and 35.16 ◦C, respectively, and the H,
I streets oscillate around 34.18–34.67 ◦C. In case 2, both squares presented temperatures
from 31.25–34.99 ◦C. It can be seen that the color palette is more uniform due to the change
of pavement and the inclusion of water sources, which explains having lower temperature
compared to the base case and case 1. Streets G (1–3) and F presented values from 33.92 ◦C
to 34.99 ◦C, and streets H and I between 33.92 ◦C and 34.45 ◦C.
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Figure 11. Results maps for potential air temperature for March at 15:00: (a) base case, (b) case 1, and
(c) case 2.

In October (Figure 12), for the base case, Herrera square shows a range between 31.17 ◦C
and 31.69 ◦C, Cathedral square varies between the most critical colors (31.51–32.38 ◦C), G3
street has a deferential behavior to the others with a range 32.03–32.55 ◦C, street H oscillates
between 31.86 ◦C and 32.2 ◦C. Finally, streets A and B (in blue and light blue) show lower
ranges between 31.17 ◦C and 31.51 ◦C.
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Figure 12. Results maps for potential air temperature for October at 15:00: (a) base case, (b) case 1,
and (c) case 2.

For case 1, Herrera square oscillates between 30.90 ◦C and 31.34 ◦C, Cathedral square
presents ranges between 31.34 ◦C and 32.37 ◦C, the same happens with street G3 with a
range of 32.03–32.37 ◦C, and street H with a range of 31.68–32.03 ◦C.

Finally, for case 2, a color change in the trim is observed due to the change in the
pavement. The squares stand out for their lower range due to the fountains placed, the
Herrera square and Cathedral oscillate between 27.99 ◦C and 31.33 ◦C and 27.99 ◦C and
31.8 ◦C, respectively. While streets G2, G3, H have temperatures of 31.8 ◦C, street F high-
lights the added sprays (with a range of 28.95–31.33 ◦C). For streets A, B the temperature
range between 30.37–31.33 ◦C.

Over the temperature differences shown in Figures 11 and 12 in terms of air temper-
ature, Table 4 summarizes the comparison between each case. A reduction of 1.96 ◦C in
temperature in both squares at 15:00 was possible in case 2 with respect to case base in
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March and October. This reduction reached up to 2 ◦C at 16:00 because of the addition of
vegetation and water sources. Besides, at 11:00, there was a reduction of 2.69 ◦C in both
squares, and the F street reached a reduction of 1.35 ◦C. This before demonstrates that
significant differences were encountered, thus influencing the biomimicry-based strategies
implemented. A temperature difference of at least 0.5 ◦C can be considered relevant due
to human body sensitivity. To the areas that did have high temperatures due to urban
canyons, the reflective roof was added, which, although it does not directly influence the
height of the pedestrian, represents a contribution to the reduction of the temperature.

Table 4. Comparison of air temperature for base case and case 2 by streets for critical months.

Period of the Day Area/Street Reduction (◦C)

March

11:00

Herrera Square
2.68Cathedral Square

A, B, C, D, E 0.87
F 1.35

G1–G3, H, I 0.78

15:00

Herrera Square 1.72
Cathedral Square 1.96

G1–G3, F 0.38
H, I 0.41

16:00
Herrera Square 2.2

Cathedral Square 2.2

October

11:00
Herrera Square

1.79Cathedral Square
G3 1.2

15:00

Herrera Square 1.7
Cathedral Square 2

A, B 0.5
G3 0.5
H 0.2

16:00
Herrera Square

2.03Cathedral Square

3.2. Mean Radiant Temperature (Tmr)

Regarding the Tmr in March (Figure 13), the three cases did not present substantial
differences. The Herrera square (base case: 58.90–71.74 ◦C; case 1: 58.40–71.26 ◦C; case 2:
59.22–72.09 ◦C). The cathedral (base case: 66.6–71.74 ◦C; case 2: 66.94–72.09 ◦C), and all
horizontal streets G1-G3, H, I (base case: 71.74 ◦C; case 1: 71.26 ◦C; case 2: 72.09 ◦C). On
the other hand, the vertical streets (A, B, C, D, and E) presented a blue coloration due to
the shadow of the buildings, where the base case: 51.19–53.76 ◦C; case 1: 50.69–53.26 ◦C;
and case 2: 51.50–54.07 ◦C. The strategies applied in case 2 seemed to increase the Tmr,
however, not significantly.

In October for the base case, the Tmr in the squares due to the presence of trees
oscillates between 45.21–64.25 ◦C for Herrera square and 56.14–67.08 ◦C for the Cathedral
square (Figure 14). For case 1, the Herrera and Cathedral squares vary between 44.78 ◦C
and 63.94 ◦C and 58.47 ◦C and 66.68 ◦C, respectively. For case 2, the changing zones
represented by Herrera and Cathedral squares oscillate between 45.39 ◦C and 64.53 ◦C and
56.33 ◦C and 67.27 ◦C, respectively. In general, the distribution Tmr is around 67 ◦C.
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Table 5 presents the comparison of reduction of the Tmr among the cases. At 11:00,
the Tmr reached a reduction of 2.24 ◦C in March. These Tmr reductions are greater in
the morning since the materials are not fully thermally loaded and the high humidity of
the hour.

Table 5. Comparison of the mean radiant temperature for base case and case two by streets for
critical months.

Period of the Day Area/Street Reduction
(−)/Increase (+) (◦C)

March

11:00 Squares (Herrera/Cathedral) −2.24

15:00

Herrera Square 0.6
G1–G3, H, I 0.35

Cathedral Square 0.34
A, B, C, D, E 0.31

16:00
Square (Herrera/Cathedral) −0.97

A, B, C, D, E −0.88

October

11:00 Square (Herrera/Cathedral) −1.66

15:00

Herrera Square 0.23
Cathedral Square 0.3

A, B, C, D, E 0.2
G1–G3, H, I, F 0.2

16:00 Square (Herrera/Cathedral) −0.1

By 15:00, the change of pavement did not reduce the temperature (in case 2). Actually,
the temperature in Square Herrera increased up to 0.6 ◦C with respect to the base. This
increment, although low, is encountered in all the areas and streets. Other alternatives
might allow avoiding this before.

Therefore, the latter plays an important role at this hour, when materials are releasing
heat to the medium. The Tmr is mainly influenced by the SVF (sky view factor) urban
canyon since the buildings are more clustered in the streets around the squares. Moreover,
the adjacent vegetation generates shade, and its canopy has greater albedo, allowing less
absorption of solar radiation.

3.3. Comfort Index PET

For the calculation of the PET thermal comfort index, the BIO-met plugin was used,
which is responsible for evaluating and calculating everything related to thermal comfort of
people, the skin, and the core generated by the outside environment with the air tempera-
ture interior, resulting in the same temperatures. The input data for this plugin were: age of
the person (35 years), weight (75 Kg), gender (male), height (1.75 m), surface area (1.91 m2),
clothing parameters (clo = 0.9) which refers to a person dressed in long-legged underpants,
normal shirt, normal pants, socks, shoes, and a light summer jacket as made [25] metabolic
rate (164.49 W) of a person walking and met of 1.48, plugging default values.

In calculating this parameter, the simulation results of the air temperature and mean
radiant temperature parameters are considered, which in turn depend on the input meteo-
rological data applied for Panama, shown in Table 3, Section 2.3.

The resulting values for the PET thermal comfort index in March are presented in
Figure 15. Slight PET values fluctuations are encountered in Herrera square (base case:
42.06–51.90 ◦C; case 1: 41.57–51.45 ◦C; case 2: 41.48–51.40 ◦C). Similarly, for Cathedral
square, slight decrements in the PET index are found (base case: 46.98–51.90 ◦C; case 1:
46.51–51.45 ◦C; case 2: 46.44–48.92 ◦C). However, significant increments are found for all
horizontal streets with respect to both the Herrera and Cathedral squares (base case: 51.90–
61.74 ◦C; case 1: 51.45–61.33 ◦C; case 2: 51.40–61.32 ◦C), while the vertical streets A, B, C, D,
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and E presented no significant changes (base case: 42.06–44.52 ◦C; case 1: 41.57–44.04 ◦C;
case 2: 41.48–43.96 ◦C).
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For the PET comfort index in October (Figure 16), the base case ranges between
36.17 ◦C and 47.92 ◦C and 39.1 ◦C and 56.73 ◦C for Herrera and Cathedral squares, respec-
tively. The horizontal streets (H, G1, G2, G3, I) present a range of 44.98–47.92 ◦C unlike the
vertical ones (A, B, C, D, E), in which, due to the generated shadow, lower values are found
(36.17–39.1 ◦C). For case 1, in Herrera square, the PET oscillates between 35.72–50.43 ◦C,
for the Cathedral square (38.66–56.02 ◦C), and the horizontal streets (H, G1, G2, G3, I)
(44.45–47.34 ◦C) and for the vertical streets (35.77–41.56 ◦C). Finally, for case 2, in both
squares, the PET values oscillate between 35.77–47.34 ◦C; the streets H, G1, G2, G3, I, the
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PET varies from 44.45 ◦C to 47.34 ◦C, and finally, for the streets, A, B, C, D and E, the PET
values present a range of 5.77–38.66 ◦C.
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For the comparison of this indicator, values and ranges were taken from a study in
hot and humid regions [26] in which different indices of outdoor comfort and ranges that
offer guidelines to choose the most appropriate according to the region are reviewed.

At 15:00, only one of the eight zones presented a reduction in the PET thermal comfort
index in October (Table 6). Only Herrera square stood out in reducing the thermal comfort
index of PET from extreme heat to high heat, that is, less than 42 ◦C, thanks to water
sources, vegetation, and the change of pavement. However, in March, in Cathedral square,
the PET decreased by 1.7 ◦C with respect to the base case, the comfort indicator could not
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be reduced, remaining above 42 ◦C (extreme heat). The same happened in the Cathedral
square in March; a considerable drop was found (2 ◦C), but it did not manage to drop
below 42 ◦C. In addition, for streets A, B, C, D, and E the indicator did decrease in relation
to March, with October being moderately hot (below 38 ◦C) because it was the most
humid month.

Table 6. Comparison for PET for base case and case 2 by streets for critical months.

Month
PET Thermal Stress

Reduction (◦C) Did the Indicator
Decrease?Time Zone Base Case Case 2

March

11:00

Herrera square High Heat High Heat −2.01 NO
Cathedral

square Extreme High Heat −2.14 YES

G1 Extreme Extreme −2.38 NO
G2, G3, H4, I Extreme Extreme −2.44 NO

15:00

Herrera square Extreme Extreme 0.5 NO
Cathedral

square Extreme Extreme 1.7 NO

G1, G2, G3, H, I Extreme Extreme 0.46 NO
A, B, C, D, E Extreme Extreme 0.57 NO

16:00

Herrera square Extreme Extreme −0.5 NO
Cathedral

square Extreme Extreme −0.5 NO

G1 Extreme Extreme −0.6 NO
G2, G3, H4, I Extreme Extreme −1.89 NO
A, B, C, D, E High Heat High Heat −0.39 NO

October

11:00

Herrera square Moderate Heat Moderate Heat −2.39 NO
Cathedral

square High Heat Moderate Heat −1.1 YES

A Extreme Extreme −4.08 NO
B, C Extreme Extreme −1.37 NO
D, E Extreme High Heat −1.22 YES

15:00

Herrera square Extreme High Heat 0.54 YES
Cathedral

square Extreme Extreme 2 NO

G1, G2, G3, H, I Extreme Extreme 0.5 NO
A, B, C, D, E Moderate Heat Moderate Heat 0.7 NO

16:00

Herrera square High Heat Moderate Heat −1.62 YES
Cathedral

square Extreme High Heat −1.99 YES

A, B, C, D, E Moderate Heat Moderate Heat −0.15 NO
G1 High Heat Moderate Heat −1.61 YES

G2, G3, H4, I Extreme Extreme −0.31 NO

4. Conclusions

This research’s main objective was to conceptualize and evaluate heat mitigation
through biomimetic strategies on an urban scale in the Casco Antiguo in Panama City. The
biomimicry-based strategies were developed using the problem-based approach. Among
the identified problems to be due to the urban canyons, materials of the facades, streets,
and absence of vegetation. These features have a direct impact on the exterior comfort in
the study area. For this reason, biomimicry appears as an alternative for passive and low
consumption solutions based on nature.

From this, two design proposals were presented in two cases as follows (emulation):
Vegetation and reflective roofs were added, emulating the behavior of the Saharan zebra
and ant (case 1). The second consisted of mixing the first case plus an additional passive



Biomimetics 2021, 6, 48 20 of 21

strategy that is the porous pavement for evaporative cooling, in addition, an active strategy
that consisted of adding spray and fountains (case 2).

With the simulation of each design proposal, the following major results were ob-
tained:

• The Herrera and Cathedral squares, in March for the air temperature, presented a
reduction of 2.68 ◦C compared to the base case;

• The mean radiant temperature (Tmr) increased in 0.6 ◦C, in March, in Herrera square
and, in the rest of the areas, the Tmr had an approximate increase of 0.3 ◦C, due to the
high radiation at 15:00, and also, due to the pavement applied in case 2. An albedo
0.1 greater (case 2) than in the base case, served to reduce the Tmr in 2 ◦C by 11:00
and almost 1 ◦C by 16:00;

• Regarding the indicator PET (equivalent physiological temperature), in October, six
zones (squares and streets) presented a change from extreme to high heat and from
high to moderate heat. However, in March, for case 2, the strategies implemented only
managed to lower one indicator, due to the high temperatures.

It should be noted that the applied strategies considered individually (for example,
porous pavement) had lower but significant results, and overall better results were obtained
concerning the base case.

Biomimetics is important since nature, throughout its history, has been adapting and
solving its problems passively and without negative impacts on itself. This is also the
case because through its methodology, any application area (architecture, engineering,
biology) can use it based on its approaches based on problems or solutions to provide
energy-efficient and sustainable designs.

It is important to note that the data obtained are the product of a simulation and no
type of comparison is made with another similar study using the software, only PET ranges
similar to a study are taken for a region with a hot and humid climate.

Finally, although considerable reductions in the heat and temperature stress indexes
were achieved, high levels of discomfort persist, so it is recommended for future research
to use the design methodology based on the same or other biomimetic strategies in the
construction of enclosures (walls) to consider cloudiness and rain in the software, and
obtain experimental data through meteorological measurements in order to obtain more
precise results. This would be done in addition to the evaluation of the behavior of walls
and green roofs versus reflective materials in this case study. Furthermore, future work
should consider evaluating how the use of these strategies affects energy efficiency in
buildings and the reduction of electricity consumption by air conditioners.
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