
International Journal of Innovative
Computing, Information and Control ICIC International c©2010 ISSN 1349-4198
Volume 6, Number 4, April 2010 pp. 1–10

SCMAS: A DISTRIBUTED HIERARCHICAL MULTI-AGENT
ARCHITECTURE FOR BLOCKING ATTACKS TO DATABASES

Javier Bajo1, Juan M. Corchado2, Cristian Pinzón2, Yanira De Paz2, Belén Pérez-Lancho2

1Universidad Pontificia de Salamanca
Compañ́ıa 5, 37002, Salamanca, Spain

jbajope@upsa.es
2Departament of Computer Science

University of Salamanca
Plaza de la Merced s/n, 37008, Salamanca, Spain

corchado@usal.es, cristian ivanp@usal.es, yanira@usal.es, lancho@usal.es

Received June 2008; revised December 2008

Abstract. One of the main attacks on databases is the SQL injection attack which
causes severe damage both in the commercial aspect and the confidence of users. This
paper presents a novel strategy for detecting and preventing SQL injection attacks con-
sisting of a multi-agent based architecture called SCMAS. The SCMAS architecture is
structured in hierarchical layers and incorporates SQLCBR agents with improved learn-
ing and adaptation capabilities. The SQLCBR agents presented within this paper have
been specifically designed to classify SQL injection attacks and to predict the behaviour of
malicious users. These agents incorporate a new technique based on a mixture of neural
networks and a technique based on a temporal series. This paper begins with a detailed
explanation of the SCMAS architecture and the SQLCBR agents. The results of their
application to a case study are then presented and discussed
Keywords: Multi-agent, Case based Reasoning, Security database, SQL injection, In-
trusion Detection System

1. Introduction. For several years, databases have been a key element of the technology
components in organizations. Nevertheless, security is a serious problem for databases
and it has become a complex task due to continuous threats and the emergence of new
vulnerabilities [7]. In addition, the recent emergence of mobile technologies such as the
Personal Digital Assistant (PDA), Smart Phone and laptop computer, as well as greater
interconnection of networks across wireless networks, have caused a revolution in the
supply of services [27]. This new philosophy of communication allows users to access
information anywhere and anytime. The problem of open environments is the complexity
of providing full protection. Over the last years, one of the most serious security threats
around databases has been the SQL Injection attack [25]. In spite of being a well-known
type of attack, the SQL injection remains at the top of the published threat list. The
solutions proposed so far seem insufficient to block this type of attack because the vast
majority are based on centralized mechanisms [26, 29, 30] with little capacity to work
in distributed and dynamic environments. Furthermore, the detection and classification
mechanisms proposed by these solutions lack the learning and adaptation capabilities for
dealing with attacks and variations of the attacks that may appear in the future.

This study presents SQL-CBR Multi-agent System (SCMAS), a distributed hierarchical
multi-agent architecture for blocking database attacks. SCMAS proposes a novel strategy
to block SQL injection attacks through a distributed approach based on the capacities
of the SQLCBR agents, which are a particular type of CBR-BDI agent [3, 17]. The

1

2 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

philosophy of multi-agent systems allows SQL injection attacks to be dealt with from the
perspective of the elements of communication, ubiquity and autonomous computation,
and from the standpoint of a global distributed system. Every component in SCMAS
interacts and cooperates to achieve a global common goal. SCMAS presents a hierarchical
organization structured by levels or layers of agents. This hierarchical structure distributes
roles and tasks for the detection and prevention of SQL injection attacks. The agents of
each level are assigned specific tasks which they can execute regardless of their physical
location.

Agents can be characterized by their capacities in areas such as autonomy, reasoning,
reactivity, social abilities, pro-activeness, and mobility, among others. These capaci-
ties provide a great advantage for offering solutions in highly dynamic and distributed
environments. Many activities in areas such as networks security, e-commerce, telecom-
munications, etc., are carried out by multi-agent systems that have been successfully
implemented [2, 5, 14, 43]. The ability to execute agents on mobile devices such as PDAs,
Smart phones and notebook computers makes them particularly suitable for detecting
SQL injection attacks in distributed environments. The SQLCBR agents are CBR-BDI
agents [17] integrated in the SCMAS architecture; their internal structure and capacities
are based on mental aptitude [23]. The use of SQLCBR agents with advanced capabilities
for analyzing and predicting SQL attacks is the main feature of the architecture. These
agents are characterized by the integration of a CBR mechanism (Case-Based Reasoning)
[3] in a deliberative BDI Agent. This mechanism provides the agents with a greater level
of adaptation and learning capacity, since CBR systems make use of past experiences to
solve new problems [17]. This is very effective for blocking SQL injection attacks as the
mechanism uses a strategy based on anomaly detection [37].

The SQLCBR agents designed within the framework of this research are located on
the upper levels of the hierarchical architecture. There are two types of CBR-BDI agents
that incorporate two novel strategies for both the classification of SQL injection attacks
and the prediction of negative behaviors by users. The first type of SQLCBR agent
is a classifier agent called “Anomaly”, which analyzes SQL queries and then classifies
them according to whether the query is defined as attack or not attack to the database.
This classifier agent incorporates a novel mechanism in the adaptation stage of his CBR
cycle based on a mixture of neural networks. Neural networks are an effective method of
classification [11] for problems of this type since current methods such as the Bayesian
method [28], Exponential Regression model [35], Polynomial Regression Model [35] or
Lineal Regression model [35] not only provide solutions more slowly, but solutions that
are less effective compared to neural networks. Using a mixture of neural networks we can
merge two networks that use neurons with distinct activation functions. As a result of this
process, the Classifier agent demonstrates a remarkable improvement in the performance
of the classifier since it accounts for the assessment carried out for the two neural networks
and avoids conflictive cases that the networks cannot resolve on their own. The second
type of SQLCBR agent is the Forecaster agent, which incorporates a mechanism to predict
the behavior based on a time series technique. This mechanism uses the history of requests
made by a user to predict current behavior.

The aim of this paper is to describe the SCMAS architecture and present the prelim-
inary results obtained after the implementation of an initial prototype. These results
demonstrate each of the following: the effectiveness of the solution in minimizing and
predicting attacks, a higher performance obtained by distributing the workload among
the available nodes in the architecture, a greater capacity for learning and adaptation
provided by the SQLCBR agents, and the flexibility to be adapted to many scenarios in
which information is susceptible to an SQL injection attack. The remainder of this paper

SCMAS 3

is structured as follows: Section 2 presents the problem that has prompted most of this
research work; Section 3 describes the SCMAS architecture, different agents incorporated
in the architecture, and the cooperation and communication among them; Section 4 out-
lines the two types of SQLCBR agents used for detecting and preventing attacks. Section
5 describes a case study based on a medical register database. Finally, the final results
and conclusion are presented in section 6.

2. Database Threat and Security Revision. A database allows users to access their
data through customized applications. The growth of the Internet and the World Wide
Web are two determining factor that have contributed to the evolution of accessing
databases [21]. These systems have become a source for the global spread and exchange
of data. As such, databases have played a crucial role in storing huge volumes of data.
On the other hand, wireless access has enabled a great interconnection among devices
and unrestricted data access to all types of data. As a result of the decentralization of
information, it has been necessary to address new issues about privacy and information
security. As a consequence of the increase in the number of incidents of unauthorized data
access, information security is considered a critical issue within the strategic policies of
organizations. For this reason a variety of security strategies for protecting information
systems and databases from outsider attacks have been explored. Such strategies include
firewalls, filters, authentication, communication transport encryption, intrusion detection,
auditing, monitoring, honeypots, security tokens, biometric devices, sniffers, active block-
ing, file level security analysis or demilitarized zone. However, current security measures
seem to be insufficient. The more recent types of attacks target the application layer and
the database systems, but the protection mechanisms are unable to detect them. Orga-
nizations are hit hard when a malicious user bypasses or violates protective measures to
steal, modify or destroy sensitive information.

SQL injection attacks are a potential threat at the application layer. The Structure
Query Language (SQL) constitutes the backbone of many Database Management Sys-
tems, especially relational databases. It carries out information handling and database
management, but it also facilitates building a type of attack which results extremely
lethal. Table 1 enumerates some of the most commonly used techniques in SQL injection
attacks. Although this type of attack has been the subject of many studies; it continues
to be one of the most frequent attacks over the Internet.

A SQL injection attack harms an organization through financial losses, loss of the
confidence on behalf of the customers, suppliers and business partners, and disruption of
the internal and external operations of the organization. A SQL injection attack takes
place when a hacker changes the semantic or syntactic logic of a SQL text string by
inserting SQL keywords or special symbols within the original SQL command that will
be executed at the database layer of an application [25]. The cause of the SQL injection
attacks is relatively simple: an inadequate input validation on the user interface. As a
result of this attack a hacker can be responsible for unauthorized data handling, retrieval
of confidential information, and in the worst possible case, taking over control of the
application server [25].

Web applications are the main target of this type of attack. However, even though
the most common attack method is through a HTTP (HyperText Transport Protocol)
protocol request, other methods are vulnerable to a SQL injection attack. The appli-
cations on wireless mobile devices execute SQL queries on the database. These queries
are transmitted through insecure transmission channels allowing them to be monitored,
captured and changed by a hacker. Finally, a recent vulnerability has arisen through the

4 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Table 1. Classification of well-known techniques used in SQL injection Attacks

Type of injection Description Example

SQL Tautologies The condition will always be true. The

classic example of the login form in a

web application.

SELECT * from TblUser where

Username = ’’ or 1=1 -- and

pass= ’’

Union Query It is possible for a hacker to use a union

in order to obtain control of the query

and retrieve some of its results.

SELECT * FROM TblSupplier

WHERE NameSupplier = ’’

UNION ALL SELECT * From

TblConsumer WHERE 1 = 1

piggy-backed

Queries

A new query is injected within the orig-

inal query without changing the logic of

the first one.

SELECT * FROM TblUser WHERE

UserName = ’’; DROP TABLE

TblUser -- ’AND pass =’’

Injection based on

inference

When there are no error messages that

allow information to be retrieved and

the attack to continue, the hacker sends

queries crafted at the database for in-

ferring answers where the value can

be true or false. Other variants are

based on inferences according to re-

sponse time.

DECLARE @s varchar(8000);

SELECT @s = db name(); if

(ascii(substring(@s, 1,

1)) {&} (power(2, 0))) > 0

waitfor delay ’0:0:5’

Stores Procedures Generates a false sense of security when

storing procedures are implemented in-

adequately. Allows an extension of

functionalities of the databases. It is

possible for the hacker to achieve an

interaction with the server’s operating

system.

Simplequoted.asp?

city=seattle’;EXEC

master.dbo.xp cmdshell

’cmd.exe dir c:

Alternative codifi-

cation

Standard Code for Information Inter-

change) or a codification in Hexadeci-

mal format.

DECLARE @q varchar(8000);

SELECT @q =

0x73656c65637420

404076657273696f6e;

EXEC(@q).

Resultado:’SELECT

@@version’

use of a RFID label. This new technology has presented a security hole which can be
exploited by a SQL injection attack and cause great damage [40].

There have been many proposed solutions for SQL injection attacks, including some
Artificial Intelligence techniques. One of the approaches is DIDAFIT [34] which can
efficiently identify anomalous accesses to the database. This technique works by finger-
printing legitimate access patterns of database transactions, and using them to identify
database intrusions. Its greatest disadvantage lies in the need to use a set of highly con-
ditioned fingerprints. Huang, et al. [29] propose WAVES (Web Application Vulnerability
and Error Scaner). This solution is based on a black-box technique. WAVES is a web
crawler that identifies vulnerable points, and then builds attacks that target those points
based on a list of patterns and attack techniques. WAVES monitors the response from

SCMAS 5

the application and uses a machine learning technique to improve the attack methodol-
ogy. WAVES cannot check all the vulnerable points like traditional penetration testing.
What’s more, the strategy used by the intrusion detection systems has even been imple-
mented in some SQL injection attacks. Valeur et al. [44] present an IDS approach that
uses a machine learning technique based on a dataset of legal transactions. These are used
during the training phase prior to monitoring and classifying malicious accesses. Gener-
ally, IDS systems depend on the quality of the training set since a poor training set would
result in a large number of false positives and negatives. Rietta [41] proposed an IDS
system at the application layer using an anomaly detection model which assumes certain
behaviour of the traffic generated by the SQL queries; specifically, elements within the
query (sub-queries, literals, keyword SQL). It also applies general statistics and proposes
grouping the queries according to SQL commands and then comparing them against a
previously built model. The SQL query that deviates from the normal profile is rejected.

The proposals based on intrusion detection depend on a database, which requires con-
tinual updating in order to detect new attacks. Garcia et al. [22] propose an IDS for
protecting a Web application that makes use of ID3, a well known classifier that builds
a decision tree from a fixed set of examples. Each input example is a Web application
query; it has several attributes and belongs to a class identified as either attack or normal.
The most important drawback of this solution is that it is non-incremental, which would
require the decision tree to be built on a regular basis, using an updated attack signature
database. Finally, Skaruz & Seredynski [42] propose the use of a recurrent neural net-
work (RNN). The detection problem becomes a time serial prediction problem. The main
problem with this approach is the large number of false positives and false negatives.

Other strategies based on string analysis techniques and the generation of dynamic mod-
els have been proposed as solutions to SQL injection attacks. The Java String Analysis
(JSA) library [12] provides a mechanism for generating models of Java strings. JSA per-
forms a conservative string analysis of an application and creates automata that express
all the possible values that a specific string can have at a given point in the application.
This technique does not target SQL injection attacks, but it is important because other
approaches use the library to generate middle forms of models. JDBC Checker [24] is
a technique for statically checking the type correctness on dynamically generated SQL
queries. This technique was not intended to detect and prevent general SQL injection
attacks, but can be used to prevent attacks that take advantage of type mismatches in
a dynamically generated query string. Wassermann & Su [46] propose an approach that
uses a static analysis combined with automated reasoning. The technique verifies that
the SQL queries generated in the application usually do not contain a tautology. The
technique detects only SQL injections that insert a tautology in the SQL queries, but can
not detect other types of SQL injections attacks. Halfond and Orso[26] propose AMNE-
SIA (Analysis and Monitoring for Neutralizing SQL Injection Attacks). This approach
uses a static analysis to build models of the SQL queries that an application generates
at each point of access to the database. In the dynamic phase, AMNESIA captures all
the SQL queries before they are sent to the database and checks each query against the
statically built models. Queries that violate the model are classified as SQL injection at-
tacks. AMNESIA depends on the accuracy of static analysis. With only slight variations
of accuracy, it generates a large number of false positives and negatives. Kosuga et al.
[30] proposes SANIA (Syntactic and Semantic Analysis for Automated Testing against
SQL Injection). SANIA captures queries between Web applications and databases. It au-
tomatically generates crafted attacks according to the syntax and semantic of vulnerable
points. SANIA uses a syntactic analysis tree of the query to evaluate the security of the
points. The biggest drawback of SANIA is that it has a significant rate of false positives.

6 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

There are other main query development paradigms proposed as solutions to SQL
injection attacks. SQLrand [8] provides a framework that allows developers to create
SQL queries by using randomized keywords instead of the normal SQL keywords. A
proxy between the web application and the database server captures SQL queries and
de-randomizes the keywords. The SQL keywords injected by an attacker are not usually
constructed by the randomized keywords, so the tainted SQL strings would have a syn-
tax error. SQLrand depends on a secret key to modify keywords, and its security relies
on hackers not being able to discover this key. Additionally it requires the application
developer to rewrite code. SQL DOM [36] and Safe Query Objects [13] use an encapsu-
lation of database queries to avoid SQL injection attacks. These techniques change the
process of building SQL strings to a systematic method that uses a type-checked API.
The API is able to systematically apply coding best practices such as input filtering and
close-fitting type checking of user input. Although effective, both of these techniques have
the disadvantage of requiring developers to learn and use a new programming paradigm
or query-development process. Overall there has been a surge in interest in overcoming
SQL injection attacks through new solutions. However, the approaches dealing with this
type of attack have been limited to centralized models with little flexibility, scalability
and effectiveness.

Table 2 compares SCMAS with current artificial intelligence-based models, specifically
those that focus on automated learning. Among the previously mentioned models, those
with an insufficient or complete lack of similarity with the classification strategy imple-
mented in our solution were omitted from the comparison process.

Table 2. Comparison of selected models approaches vs. SCMAS

Low et al.,

2002

Huang, et

al., 2003

Valeur et

al., 2005

Rietta,

2006

Garcia et

al., 2006

Skaruz et.

al 2007

SCMAS

High-Complexity

Attacks

Yes Yes Yes Yes Yes Yes Yes

Type of Detection Misuse Anomaly

/ Misuse

Anomaly Anomaly Anomaly Anomaly Anomaly

/ Misuse

Distributed

Approach

No No No No No No Yes

Learning ability Yes Yes Yes Yes Yes Yes Yes

Adaptive ability No No No No No No Yes

Balances the

Workload

- - No No No No Yes

Tolerance to Failure - - - - - - Yes

Scalability Yes Yes - - - - Yes

Positive / Negative

False

Yes Yes Yes Yes Yes Yes Yes

Time Response Nearly

Real time

- Nearly

Real time

- - - Nearly

Real time

Ubiquity No No No No No No Yes

According to the results shown in Table 2, SCMAS outperforms the other models with
respect to:

• Type of Detection: SCMAS was strategically designed to exploit the strong points
of the most recognized and applied detection techniques.

SCMAS 7

• Distributed Approach: SCMAS is based on a multi-agent architecture that can ex-
ecute tasks derived from the classification process in a distributed way.

• Adaptive ability: SCMAS includes two types of intelligent SQLCBR agents that
were designed to learn and adapt to changes in attack patterns, new attacks, and
types of user behaviour.

• Balances the Workload: SCMAS was designed to distribute the classification task
load throughout the various layers of the hierarchical architecture.

• Tolerance to Failure: SCMAS has a hierarchical design that can facilitate error
recovery through the instantiation of new agents.

• Scalability: SCMAS is capable of growing (by means of the instantiation of new
agents) according to the needs of its environment.

• Ubiquity: SMCAS provides a ubiquitous alert mechanism to notify security personnel
in the event of an attack.

Some aspects of SCMAS, such as response time or the required initial learning curve, can
be considered a disadvantage when compared to other solutions. Nevertheless, SCMAS
provides a much more efficient classification once the system acquires experience, and a
reasonably low response time.

The SCMAS architecture presents novel characteristics that have not heretofore been
considered in previous approaches. The next section presents the SCMAS architecture in
greater detail.

3. SCMAS: A Solution based on Multi-agent System. The agents handle capac-
ities such as autonomy, social abilities, reasoning, learning, and mobility, among others
[47]. One of the main features of agents is their ability to carry out cooperative and
collaborative work when they are grouped into multi-agent systems to solve problems in
distributed manner [14, 18]. Recent software applications implemented in the electronic
commerce, industry and health sectors, among others [2, 5, 14] are suited to work in dy-
namic environments with ubiquitous access to information, and require the use of mobile
technologies. As such, the problem of providing protection against SQL injection attacks
requires a different approach. A solution based on a multi-agent architecture presents the
most suitable features for resolving the problem. The present study proposes the use of
a distributed and hierarchical architecture depicted in Figure 1 to detect and block SQL
injection attacks. It is based on a totally innovative approach since there is no known
architecture with these characteristics for resolving the problem of SQL injection attacks.

As depicted in Figure 1, the distributed resolution of problems balances the workload,
facilitates the recovery from error conditions, and also avoids centralized traffic. While
requests in current environments are carried out from several devices, it is preferable for
specialized agents to monitor requests from various strategic points and avoid having all
requests go directly to the database. Similarly, the analysis, classification, and prediction
capabilities, among others, are distributed in a layered structure, where the agents that
make up the architecture are assigned specific roles to perform their tasks. Moreover,
the distribution greatly simplifies the capacity to recover from errors or failures because
if an agent fails, it is immediately replaced without affecting the other agents at the
same level or in other levels. Additionally, SCMAS architecture uses a model based on
a hierarchical model that reduces the complexity of tasks such as monitoring devices
and users, classifying user requests, predicting behavior, evaluating the final solution etc.
Distributing the functionality at each level, while maintaining each level independent,
allows new changes to be easily adapted. Each level of architecture holds a collection of
agents with well-defined roles that allow their tasks and responsibilities to be defined. The
architecture has been divided into 4 levels so that the specific tasks are assigned according

8 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

to the degree of complexity. Figure 1, illustrates the SCMAS architecture with each level
and the respective agents. The details of each type of agent located at the different levels
of SCMAS architecture are presented in Table 3.

The complexity of the components of the architecture increases with each level of hi-
erarchy. The entities at each layer use the functionalities that have been provided to
them by entities at the bottom layer. The functions have been divided according to the
SCMAS levels. The operational tasks are performed at layer 1 and include: capture traf-
fic generated by user requests across different devices, retrieve the SQL string from the
capture, and execute a syntax analysis of the SQL string. Layer 2 contains the tactical
strategic tasks for the detection and classification of user requests. The entities at layer
3, the administration layer, carry out tasks related to determining the classification of
requests. Additionally, they coordinate the overall functioning of the architecture and
determine which measure to take when an attack has been detected. Finally, the tasks
of interaction with the user are performed in the top layer of the architecture called the
interaction layer, which provides an interface to access services of the architecture.

3.1. Cooperation of agents for task execution. In SCMAS architecture each agent is
equipped with the ability and resources to achieve its own goals. However, to achieve the
overall goal of the architecture (classifying user requests and predicting the behavior of the
hacker) it is necessary to have cooperation and communication among the architecture’s
agents. This subsection addresses the way in which the types of agents within SCMAS
cooperate and collaborate. Different situations in which agents work together to achieve
a particular goal are: detection by misuse detection (FingerPrint, Sensor and DBPattern
agents cooperate by applying misuse detection to accomplish a task); classification of
the user requests (FingerPrint and Anomaly agents cooperate by accomplishing tasks
related to the classification of user requests); resolving user requests (Manager, Anomaly,
Interface and LogUser cooperate to resolve the task of the classifying user requests);
responding to user requests (Manager, DB and Response cooperate to provide an answer
to user requests); and behavior analysis and blocking of malicious users (Manager, Sensor
and Forecaster agents cooperate in the analysis of user behavior for blocking attacks by
hackers). Below, an example of cooperation explains how Misuse detection resolves a
detection task.

As shown in Figure 2 and Table 4, the cooperation to detect attacks based on misuse
detection involves the Sensor agent, which belongs to the bottom layer, and the DBPattern
and FingerPrint agents, which are located at level 2. Figure 2 illustrates how the Sensor
agent gets the requested SQL string, analyzes it and sends the results to the FingerPrint.
The FingerPrint agent carries out a pattern matching. It requires the DBPattern agent
to search the database and retrieve patterns similar to the SQL query being analyzed.

3.2. Communication among agents. In distributed environments where the agents
are applied as solutions, it is essential to provide the necessary mechanisms for commu-
nication among the agents so they can perform their tasks efficiently. The cooperation
among agents is highly dependent on the efficiency of the communication mechanisms
which support the interaction. As part of the architecture that is proposed in this paper,
communication mechanisms were identified at each level of the architecture (intra-layer
communication), and a global communication among levels for the execution of tasks
(communication inter-layer). The SCMAS architecture considers the use and control of
mobile devices, laptop computers and workstations, and takes the use of wireless networks
into account.

The SCMAS architecture was developed following the recommendations made by FIPA
(Foundation for Intelligent Physical Agents) [20]. The physical transfer of messages is

SCMAS 9

Table 3. SCMAS Architecture’s agents

Agent types Archictecture
Level

Quantity Abilities / Tasks

Sensor 1 n=number of

host

Located in each of the devices with access to the data-

base. They have 3 specific functions: a) Capture data-

grams launched by the devices. b) Order TCP fragments

to extract the request’s SQL string. c) Provide Syntactic

analysis of the request’s SQL string.

FingerPrint 2 n=workload

available

Gets the results supplied by the Sensor agent. Its func-

tion includes a pattern matching of known attacks. A

database with previously built patterns allows this task.

DBPattern 2 1 Cooperates with the FingerPrint agent in the retrieval

of patterns from the database. It is also responsible for

updating and adding new patterns to the patterns data-

base.

Anomaly 2 n=workload

available

A core component of the architecture, it carries out a

classification of SQL strings through detection anomalies.

It integrates a case based reasoning (CBR) mechanism.

In the reuse stage of the CBR cycle it applies a mixture of

neural networks to generate a classification (legal, illegal

or suspicious).

Manager 3 1 Responsible for the decision-making, evaluation and co-

ordination of the overall operation of architecture. Eval-

uates the final decisions of classifications and manages

attack alerts and coordinates the actions necessary when

an attack is detected. Decisions are based on a method

of voting among the Anomaly agents.

Forecaster 3 n=workload

available

Another core agent in the architecture. Responsible for

predicting an attack based on user behavior. Using a

technique based on moving averages integrated into the

reuse phase of the CRB cycle, the agent is able to pre-

dict user behavior and determine an attack against the

database.

LogUser 3 1 It is responsible for updating the profile of application

users. The requests made to the database are registered,

and user profiles are labeled based on the historical be-

havior. Cooperates with the Anomaly agent to update

the users- log.

DB 3 1 It is responsible for executing queries to the database

once the requests are classified as legal, and getting the

results.

Interface 4 1 It facilitates the interaction between a human expert in

charge of security and architecture. It is equipped with

the ability to run on mobile devices to achieve direct

communication with security personnel whenever an at-

tack is detected. It also facilitates the implementation of

adjustments in the setup of the architecture.

Response 4 1 Responsible for formatting and delivering the results of

request in device interfaces. The results of valid requests

are sent to users; however, invalidated requests are re-

jected and notified with a warning message.

10 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Figure 1. SCMAS Architecture - Levels and agents.

carried out using HTTP (HyperText Transport Protocol) and MTP (Message Transport
Protocol) as transport protocols. Another component in communication agents is the
communication language. In SCMAS architecture, communication among agents is car-
ried out through the exchange of messages. Messages in SCMAS architecture are based
on the standard FIPA CAL, which is based on the speech act theory in which messages

SCMAS 11

Table 4. Cooperation-Detection based on Misuse detection

Agents Description

Sensor - FingerPrint

- DBPattern
• Sensor agents send their results (trans-

formed SQL string, syntax analysis data,
and user data) to a specific FingerPrint
agent. The FingerPrint executes a pattern
matching with known SQL attack patterns.

• The FingerPrint agent requests a set of
SQL patterns from the DBPattern agent,
which manages the pattern database. The
DBPattern agent retrieves and sends the
set of patterns to the FingerPrint. It is also
possible for the DBPattern agent to update
the pattern database.

Figure 2. Cooperation to resolve the task based on misuse detection.

are considered communicative acts [10]. Figure 3 presents a model of messages exchanged
between agents in the SCMAS architecture. Figure 3 (a) presents a FIPA CAL message
showing attributes defined and standardized by FIPA. It is important to note that not all
attributes are required in a FIPA CAL message. Figure 3 (b) provides an example of a
message relayed between a Sensor agent located on the bottom layer of the architecture
and a Fingerprint agent located on level 2. The sensor agent provides the monitoring
results by sending the results of the SQL string’s syntax analysis and user data. Figure
3 (c) makes a graphic representation of the message exchanged between Sensor01 agent
and FingerPrint01 agent.

Figure 3. Model of the messages exchanged between agents in the SCMAS architecture.

12 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Finally, to achieve interaction and cooperation among agents within the SCMAS archi-
tecture, a set of communication protocols were defined. Figure 4 presents two examples
of the communication between two agents through a protocol diagram. Figure 4(a) shows
the communication between the FingerPrint agent and the Pattern agent to request SQL
patterns stored when the misuse detection is applied. Figure 4(b) shows the message sent
by the FingerPrint agent when it sends the results generated by the capture of the SQL
query, string analysis and user data.

Figure 4. Communication pattern during the exchange of a message be-
tween agents.

As the final step, elements to provide security in agent communication were taken into
account. This resource was provided by a secure channel through the HTTPS protocol
(Hypertext Transfer Protocol Secure) [39]. Moreover, the internal-communication among
agents of SCMAS architecture was secured by means of JADE-S [6], a JADE plug-in that
supports user authentication and agents, encryption and message signature.

4. SCMAS Agents with Reasoning Capabilities. The application of agents and
multi-agent systems facilitates taking advantage of agent capabilities, such as mobil-
ity, pro- activeness or social abilities, and the possibility of distributed problem solv-
ing. Within the context of an intelligent environment, agents must be able to respond
to events, take initiative according to their goals, communicate with other agents, inter-
act with users, and make use of past experiences to find the best ways to achieve goals.
There are many architectures for constructing deliberative agents, and many of them are
based on the Beliefs Desires Intentions (BDI) model [47]. In the BDI model, the internal
structure of an agent and its capacity to choose is based on mental aptitudes, given that
agent behavior is composed of beliefs, desires, and intentions. The beliefs represent its
information state, what the agent knows about itself and its environment. The desires are
its motivation state, what the agent is trying to achieve. And the intentions represent the
agent’s deliberative states. Intentions are sequences of actions which can be identified as
plans. A BDI architecture has the advantage of being intuitive whereby identifying the
process of making decisions and carrying them out are relatively simple tasks.

Case-based Reasoning (CBR) is a type of reasoning based on the use of past experiences
[1]. The purpose of case-based reasoning systems is to solve new problems by adapting
solutions that have been used to solve similar problems in the past. The fundamental
concept when working with case-based reasoning is the concept of case. A case can be

SCMAS 13

defined as a past experience, and is composed of three elements: a problem description
which describes the initial problem, a solution which provides the sequence of actions
carried out in order to solve the problem, and the final state which describes the state
achieved after the solution was applied. A case-based reasoning system manages cases
(past experiences) to solve new problems. The way in which cases are managed is known
as the case-based reasoning cycle. These systems execute the CBR cycle which consists
of four sequential steps: retrieve, reuse, revise and retain [1].

The SQLCBR agents proposed in the framework of this research are a CBR-BDI type
of agent specially adapted to resolve the SQL injection attack problem. These agents use
the concept of CBR to gain autonomy and improve their problem-solving capabilities.
The method proposed in [17] facilitates the incorporation of case-based reasoning sys-
tems as a deliberative mechanism within BDI agents, allowing them to learn and adapt
themselves, lending them a greater level of autonomy than what is normally found in a
typical BDI architecture [9]. Accordingly, SQLCBR-agents can reason autonomously and
therefore adapt themselves to environmental changes. The case-based reasoning system
is completely integrated within the agent architecture. The SQLCBR are classifier and
predictor agents that incorporate a “formalism” that is easy to implement, in which the
reasoning process is based on the concept of intention. Intentions can be seen as cases,
which have to be retrieved, reused, revised and retained. A direct relationship between
case-based reasoning systems and BDI agents can also be established if the problems are
defined in the form of states and actions.

Case: <Problem, Solution, Result> BDI agent
Problem: initial state Belief: state
Solution: sequence of <action,[intermediate state]> Intention: sequence of <action>
Result: final state Desire: set of <final state>

SQLCBR agents implement cases as beliefs, intentions and desires which lead to the
resolution of the problem. As described in [4, 14], each state of a CBR-BDI agent is
considered as a belief, including the objective to be reached. The intentions are plans of
actions that the agent has to carry out in order to achieve its objectives, which makes
each intention an ordered set of actions. Each change from state to state is made after
carrying out an action (the agent remembers the action carried out in the past, when it
was in a specified state, and the subsequent result). A desire will be any of the final states
reached in the past (if the agent has to deal with a situation that is similar to one from the
past, it will try to achieve a result similar to the one previously obtained). The SQLCBR
agents, which are explained in detail below, use these concepts to define a case structure
for SQL injection problems, and include specific novel mechanisms in the different phases
of the CBR cycle to improve the tasks of classification and prediction.

4.1. SQLCBR Agent with Classification Capabilities. The SQLCBR Anomaly
agent incorporates a reasoning mechanism that allows it to prevent and detect SQL injec-
tion attacks. This novel prevention and detection technique is supported by a prediction
model based on neural networks, which is configured for short-term predictions of intru-
sions. This mechanism uses a memory of cases which identifies past experiences with
the corresponding indicators that characterize each of the attacks. This paper presents
a novel classification system that combines the advantages of the CBR systems, such as
learning and adaptation, with the predictive capabilities of a mixture of neural networks.
SQLCBR agents are particularly suitable to be applied to classification problems in dy-
namic environments, such as the classification of SQL injection attacks, because they
learn from past experiences and adapt to changes [31, 32]. The elements of the SQL
query classification problem are represented as follows, using CBR terminology:

14 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

• Problem Description: Describes the initial situation (information available) before
beginning with the classification process. As shown in Table 5, the problem descrip-
tion consists of a case identification, user session and SQL query elements.

• Solution: Describes the actions carried out in order to resolve the problem descrip-
tion. As shown, in Table 5, it contains the case identification and the applied solution.

• Final State: Describes the state achieved after the solution has been applied. It
can take three possible values: attack when a SQL query is considered as malicious,
not attack when the SQL query has been executed without malicious problems, or
suspect when the SQL query has been executed but there still exist doubts about
the real nature or intentions of the user. The multi-agent architecture incorporates
the Manager agent, which allows an expert to evaluate the classification.

Table 5. Structure of the problem definition and solution for a SQL query classification

Problem description fields Solution fields

IdCase Integer Idcase Integer

Session Session Classification Query Integer

User String

IP Address String

Query SQL Query SQL

Affected table Integer

Affected field Integer

Command type Integer

Word GroupBy Boolean

Word Having Boolean

Word OrderBy Boolean

Numer And Integer

Numer Or Integer

Number literals Integer

Number LOL Integer

Length SQL String Integer

Start Time Execution Time

End Time Execution Time

Query Category Integer

The reasoning mechanism of the Anomaly agent is responsible for classifying the SQL
database queries made by the users. When a user makes a new request, it is first checked
by a pattern matching mechanism. This mechanism is based on a set of well-known
patterns which are stored in a database that handles a significant number of signa-
tures not allowed on the user level, such as symbol combination, binary and hexadec-
imal encoding, and reserved statement of language (union, execute, drop, revoke, concat,
length, asc, chr etc.). If the FingerPrint agent detects a known signature using the pat-
tern matching mechanism, the query is automatically identified as an attack and the
classification process is complete. In order to identify other SQL attacks that do not
match a known pattern, the Anomaly agent uses the CBR mechanism, which must have
a memory of cases with the structure described in Table 5. The problem description
for a case is obtained by a string analysis technique over the SQL query. This pro-
cess can be easily understood through the following example: Let us suppose that a
query with the following syntax: “Select field1, field2, field3 from table1 where field1 =

SCMAS 15

input1 and field2=input2” is received. If the fields input1 and input2 are used to by-
pass the authentication mechanism with the following input data: “Select field1, field2,
field3 from table1 where field1 =” or 9876 = 9876 -- ‘and field2=””, then, the anal-
ysis of the SQL string would generate the result presented in Table 6, with the follow-
ing fields: Affected table(c1), Affected field(c2), Command type(c3), Word GroupBy(c4),
Word Having(c5), Word OrderBy(c6), Numer And(c7), Numer Or(c8), Number literals(c9),
Number LOL(c10), Length SQL String(11), Query Category(12). The fields Command type
and Query Category have been encoded with the following nomenclature Command Type:
0=select, 1=insert, 2=update, 3=delete; Query Category: -1=suspicious, 0=illegal, 1=le-
gal, 2=unassigned.

Table 6. SQL String transformed through the string analysis

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
1 3 0 0 0 0 1 1 2 1 81 0

When the Anomaly SQLCBR agent receives a new problem description, it initiates a
new CBR cycle to achieve a solution. Figure 5 shows the algorithm containing the four
steps of the CBR cycle:

• Retrieve: The first phase of the CBR cycle consists of recovering past experiences
from the memory of cases, specifically those with a problem description similar to the
current request. In order to do this, a cosine similarity-based algorithm is applied,
allowing the recovery of those cases which are at least 90% similar to the current
problem description.

• Reuse: The recovered cases are then input for the second phase of the CBR cycle,
the reuse phase. In the reuse phase the similar cases recovered are used to train
the mixture of neural networks. Once the mixture has been trained, it is able to
classify the current problem. The result obtained using a mixture of the outputs of
the networks provides a balanced response and avoids individual tendencies (always
taking into account the weights that determine which of the two networks is more
optimal). Because the mixture of neural networks is composed of two different net-
works, there are some considerations to take into account in the training process:
(i) the neural network with neurons based on the sigmoidal function is trained with
the recovered cases that were classified as attack or not attack, whereas the neural
network with neurons based on hyperbolic function is trained with all the recovered
cases (including those of identified as suspicious). (ii) Moreover, a preliminary anal-
ysis of correlations is required to determine the number of neurons of the input layer
of the neuronal networks. The data used to train the mixture of networks must not
be correlated. Avoiding correlated data allows network topologies to be reduced.
After removing correlations, only the input variables that are not correlated to each
other remain, which is reflected in a smaller number of neurons in the input layer,
thus lowering the training time [19]. (iii) Additionally, it is necessary to normalize
the data (i.e., all data must be values in the interval [0,1]) after deleting correlated
cases. If data are not normalized, an overflow is produced in the outputs of neu-
ral networks, causing an error. The cause of the error is the use of the hyperbolic
tangent and sigmoidal function as activation functions.

• Revise: An expert evaluates the solution proposed for those cases where the mixture
of networks generates output values in the interval [-0.6,-0.4] [0.4,0.6]. The remaining
cases are automatically stored.

16 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

• Retain: The system learns from its own experiences from each of the previous phases
and updates the database with the solution obtained in the query classification. All
cases marked as efficient in the revise phase are stored.

Figure 5. Algorithm of the Cycle CBR for classifying SQL query.

As shown in Figure 5, an essential element in the classification algorithm executed
by the Anomaly agent is the mixture of neural networks that is implemented in the
reuse stage of the CBR cycle to predict attacks. The mixture uses two neural networks,
both of which are multilayer perceptrons, but each of the networks uses a different type of
activation function. The general idea of the mixture is that each of these networks obtains
an individual solution for the problem by following a particular strategy. The solutions

SCMAS 17

provided are then combined to find the optimal classification. The following paragraphs
provide a detailed explanation of the internal structure of the mixture of neural networks,
as well as the way it is used to classify SQL queries as attack or not attack. Figure 6
illustrates the structure for the mixture of the neural networks.

Figure 6. Snapshot of the mixture of the neural networks.

As shown in Figure 6, the new case is presented to both neural networks at the same
time, after which each of the neural networks will give its own decision regarding the
classification. The neural network based on a sigmoidal function gives two results (illegal
or legal) and the neural network that uses a hyperbolic tangential function produces three
results (illegal, legal or suspicious). The learning algorithm for the neural networks and
an explanation for the difference in each type of network are detailed in [19]. Because the
mixture is composed of two multilayer perceptrons that use different activation functions,
the learning algorithm has been particularized by taking both possible activation functions
into account [19].

• The Sigmoidal activation function has its range of possible values at the interval
[0, 1]. It is used to detect if the request is classified as an attack or not attack.
The value 0 represents an illegal request (attack) and 1 a legal request (non attack).
The Sigmoidal activation function is the most commonly used activation function for
classifications between two groups. This function has the drawback of only placing
classifications in two groups, that is:

f(x) =
1

1 + e−ax
(1)

Where the value a=1 is used in the equation
• The hyperbolic tangential function has its range of possible values in the interval

[−1, 1]. It is used to detect if the request is an attack, not attack or suspicious.
The hyperbolic tangential function allows more possible cases than the sigmoidal
function. The value 0 represents an illegal request, value 1 represents a legal request,
and value −1 are suspicious requests. The hyperbolic tangential function is suitable
for classifying the request into three groups. The hyperbolic tangential activation
function is given by

18 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2)

If only one network with a sigmoidal activation function is used, then the result
provided by the network would tend to be attack or not attack, and no suspicious
results would be detected. On the other hand, if only one network with a hyperbolic
tangent activation is used, then a potential problem could exist in which the majority
of the results would be identified as suspicious although they were clearly attack or
not attack. The mixture provides a more efficient configuration of the networks since
the global result is determined by merging two filters. This way, if the two networks
classify the user request as an attack, so too will the mixture; and if both agree
that it is not an attack, so will the mixture as well. If there is no concurrence, the
system uses the result of the network with the least error in the training process
or classifies it as a suspicious. In the reuse phase the two networks are trained by
a back-propagation algorithm for the same set of training patterns (these neural
networks are named Multilayer Perceptron), using a Sigmoidal activation function
(which will take values in [0, 1], where 0 = Illegal and 1 = legal) for a Multilayer
Perceptron and a hyperbolic tangent activation function for the other Multilayer
Perceptron (which take values in [−1, 1], where −1 = Suspect, 0 = illegal and 1 =
legal).

The response of both networks is combined obtaining the mixture of networks.
The networks that are combined should have the same number of neurons in output
and input layers. In addition, it is necessary that the training set used in both
networks be the same (same output and input data, and number of patterns), since
the intention is to assess which of the two networks learns best from the training
set. However, the number of neurons in the hidden layer can be variable. The steps
required to mix the outputs of the neural networks are:
– Determine the best network for the output neuron (the network that provides

a minimum average absolute error for the output neuron which is denoted by,
where r indicates the network considered).

– Consider outputs of each network according to the good results obtained during
the learning process.

To formalize the mix of networks, a new counter r is added to indicate the number
of the network being considered.

E.A.M.S.r =
1

2q

q∑
p=1

|Y pr − dpr| ; r = 1, 2 (3)

Where Y pr: is the output obtained by training pattern p of the network r, dpr: is
the desired output according to training pattern p of the network r, and q the number
of training patterns. The networks are sorted from best to worst performance, which is
valued through the rate of learning, that is, of least to greatest E.A.M.S.r. Once sorted,
the output obtained from merging both networks is calculated, resulting in a weighted
function of the output from each network. The fact that the network has provided a better
learning rate must be taken into account and positively weighted. The output obtained
from the mixture of neural networks with output k for the Z networks is denoted as y2, as
is presented in (4), where a = 1 if the networks are previously sorted from best to worst.

SCMAS 19

y2 =
1

2∑
r=1

e−|a−r|

2∑
r=1

e−|a−r|yr (4)

Compared to traditional techniques, neural networks are a good alternative for classi-
fication problems as evidenced by the empirical results presented in the results section.
The reason for choosing a mixture of networks in classifying SQL injection attacks is
that the use of neural networks alone is limited when it comes to making decisions. As
a clear example of this type of problem, suppose that we approach the problem using
a single neural network, for example one based on neurons with a sigmoidal activation
function. In this case, the network could not conclude anything automatically and the
intervention by a human expert would be required. However, if instead of considering just
one network, we use a mixture of networks, the system is capable of solving this type of
situation. Table 7 presents possible situations for the output of the neural network with
a sigmoidal function and a value of 0.5. This network has the least error training of the
two systems, and different cases of output are evaluated by the network with tangential
hyperbolic activation function.

Table 7. Possible situations where the mixture of neural networks would
not generate a solution

Sigmoidal
Network
Output

Hyperbolic
Network
Output

Mixtured Output

0.5 0.5 (1/(1 + Exp[1]))(0.5 + 0.5 ∗ Exp[1]) = 0.5
0.5 −0.5 (1/(1 + Exp[1]))(0.5− 0.5 ∗ Exp[1]) = −0.231059
0.5 0.25 (1/(1 + Exp[1]))(0.5 + 0.25 ∗ Exp[1]) = 0.317235
0.5 −0.25 (1/(1 + Exp[1]))(0.5− 0.25 ∗ Exp[1]) = −0.0482939
0.5 0.75 (1/(1 + Exp[1]))(0.5 + 0.75 ∗ Exp[1]) = 0.682765
0.5 −0.75 (1/(1 + Exp[1]))(0.5− 0.75 ∗ Exp[1]) = −0.413823

As shown in Table 7, if the mixture is used, the only situation requiring intervention
by a human expert is the one in which both networks give an output value of 0.5. The
likelihood of this happening is 1

11
; applying the Laplace rule which tells us that the

probability of the occurrence of an event is the quotient of favorable cases and possible
cases. When working with one digit decimal numbers, there is one case in which the
mixture cannot decide: when the value from among the 11 possible interval values [0, 1] is
equal to 0.5. The probability that a network with hyperbolic activation function will take
on a value of 0.5 is 1

21
(there continues to be one case with one digit decimal numbers in

which the mixture cannot decide from among the 21 possible values interval [−1, 1]). So,
the likelihood of needing the intervention by a human expert by using a mixture of the
two networks, as compared to both networks individually would be: 1

11
∗ 1

21
∗ 1

231
= 0.0043

4.2. SQLCBR Agent with Classification Capabilities. This is a SQLCBR agent
specially designed to predict the behavior of suspicious users. When a user makes requests
that are seen as malicious or suspicious, it is very important for the system to have a
mechanism to predict when and what type of request the user is going to make next. Such
predictions allow the system to anticipate the actions of potentially dangerous users and
block the attacks before they occur. The use of CBR mechanisms is especially suitable for
this type of problem since it is possible to use past experiences to predict future behavior.

20 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

This paper proposes a strategy of a CBR cycle based on the use of Time Series at the
reuse stage. This is a novel system for predicting behaviors that will improve the results
that until now were only obtained with other existing methods. The reason is that each
user identified as a hacker usually follows unique patterns of action, especially if he or
she has already been successful with previous attacks. In other words, there is a high
component of similarity with past experiences. Among the techniques that are currently
used to predict the behavior that a hacker can engage in when executing SQL injection
attacks are the Linear Regression Method [35], Decision Trees [38] and the Time Series
[35]. Table 8 shows the efficiency of these methods based on 100 cases of SQL injection
attacks. As seen in Table 8, the prediction based on Time Series and the prediction based
on Decision Trees provide excellent results, whereas the results of the Linear Regression
method show a much lower degree of success.

Table 8. Effectiveness of the prediction techniques

Method Efficient(%)
Linear Regression 50
Tree Decision 95
Temporal Series 97

The CBR-BDI mechanism based on a time series analysis is responsible for predicting
behaviour according to the requests made by users. When a user makes a new request,
it is matched against well-known patterns of attack. If there is a match, the request is
automatically identified as an attack. Additionally, the request is identified as an attack
by the Forecaster agent in cases where there are several unsuccessful attempts at certain
requests, which is known as a brute force attack. In order to identify the rest of the
SQL attacks, the system uses CBR, which must have a memory of cases dating back at
least 4 weeks, and store the following variables: User ID, Host ID & IP Address, Request,
Completion (results of user requests, which returns a zero if successful, otherwise it returns
the error code describing the reason for the failure), Valid Time (which has two values,
startup time and time of completion). The structure of a case for the behavior prediction
problem of users is shown in Table 9.

Table 9. Structure of a case for user behavior prediction problem

Problem Description Solution: Prediction

User’s log-queries Next request to be made by the user

User profile Estimated time to resolve the request

Current query (Case newly classified)

As formerly indicated, in order to carry out a suitable prediction it is necessary to have
previously stored the variables that make up the problem description during a period
of at least 4 weeks. With these data stored, a multivariate time series is created and
certain trends are eliminated (overall direction of the variable in the observation period),
using the moving averages method. This method involves the replacement of one series
by another series formed with the means of several values from the original series. The
moving averages method of size n is used when each of the means of the new series
created is equal to the means of n elements adjacent to the series. So, for example:
m(Xt) = Xt−1+Xt+Xt+1

3
, is the moving average for three points. If n is odd then only

the first series of means is calculated. m(Xt) = Xt−1+Xt+Xt+1

3
is the moving average for

SCMAS 21

three points. If n is even, then the second series of means is collected. In other words,

m(Xt) = (Xt−2/2)+Xt−1+Xt+Xt+1+(Xt+2/2)
4

,is the moving average for four points.
When a user executes a request, the multivariate time series informs us about what type

of action to take, what it expects the following requests will be, and what the approximate
time of the next action taken will be. This will allow us to take the necessary measures
and anticipate movements made by the user. The basic idea in obtaining the time series
is to take into account both the exact moment at which requests are made by users, as
well as earlier requests made. Each new request that is executed has a direct correlation
with the previous request, as well as with the response given by the system. Thus, the
request made at the exact time t+1, depends on the request made at the exact time t and
of the success or failure of the request made in time t. The time series takes the patterns
stored in the database into account and applies the moving averages method. The time
series labels the axis of the ordinate with the number of requests, the request related
to time t, and the success or failure obtained with such request. To predict the next
request, the series with the actions carried out by the user until that instant of time are
recovered. Then a search is executed on the stored data in order to obtain the sequence
of actions most likely to be carried out by the user. In this way, the time series can be
represented as a function: Request, Completion (results of user requests, which return a
zero if successful, otherwise an error code describing the failure is returned.) and Valid
Time (which has two values, startup time and time of completion).

5. Case Study. A Medical Database. A case study was proposed to test the effec-
tiveness of a SCMAS prototype. The prototype was evaluated by a previously developed
multi-agent system installed in a geriatric facility/care home [14]. The implemented multi-
agent system has improved the security of the patients, facilitated care-giver activity and
guaranteed an adequate level of efficiency. The system was developed in a distributed
environment containing devices such as PDA, notebook computers and wireless internet
access. A back-end database stores and supplies information. The database manager is
MySQL. The participants, including nurses, doctors, patients, social workers and other
employees can be seen in Figure 7. The medical staff in charge of patient care was com-
prised of 2 doctors, 10 nurses and 1 social worker. Thirty patients were being observed
and attended to by the multi-agent system. Each nurse was equipped with a PDA, so
a total of 10 PDAs were executing queries on the database during the work day. With
these data, we prepared an attack scenario. The equipment necessary for performing the
test included 2 workstations and 3 PDAs. The test was carried out over a period of 30
uninterrupted working days.

During the execution of the multi-agent system, several types of SQL queries were
carried out on the database. The queries were related to patient treatments, scheduling
the work day for the nurses, etc. Most of the queries were executed from PDAs. The PDAs
are used by doctors and nurses to accomplish their tasks. To facilitate the evaluation of
the prototype, we focused on the nurse role. A main volume of queries was generated
each time a plan was assigned to a nurse. The plans changed for different reasons during
their execution and these changes increased the number of queries on the database. When
nurses start and finish a task, they send a response through a SQL query. The nurses have
direct access to the database system through the application interface on their PDAs.
The strategy followed in the case study was based on the execution of queries crafted
from 2 attack PDAs. These PDAs were installed with a user interface similar to the
nurses’ PDAs, but the two attack PDAs are capable of executing tainted queries. When
a query is executed from the attack PDA, it carries out a type of SQL injection that
has to be captured, analyzed and classified as legal, illegal or suspicious according to our

22 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Figure 7. Abstract scenario of the real environment (Geriatric Care Home).

parameters. The FingerPrint agents and Anomaly SQLCBR agents were distributed in
the 2 workstations. Because the test was carried out on a real medical database, a special
mechanism was built to guarantee the integrity of the database. All the queries executed
both by the nurses’ PDAs and the attack PDAs were examined and classified. The test
was conducted with a total of 12 PDAs, 10 PDAs assigned to the active nurses and 2
PDAs to execute attacks, and a total of 10, 200 queries were sent to the medical database.
Each nurse’s PDA executed approximately 30 daily queries, and during the 30 days of
the test, 9, 000 legal queries were carried out. Each of the two attack PDAs executed 20
illegal queries daily. These PDAs sent 40 attacks during a work day. Throughout the 30
day test period, a total of 1, 200 attacks targeted the medical database. The volume of
queries during the test period allowed us to build a case memory to validate the proposed
strategy.

The following example explains the classification process for the SQL queries in SCMAS.
Let us assume that a nurse uses her personal identification number and password to log
into the system from a PDA, whereby the following SQL string is used to place the request:

SELECT IdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary,
BAccount FROM TBNurses WHERE strIdNurse=‘PA0012’ AND strPassword= ‘ONeil15’

The string is attacked and the resulting SQL code is:
SELECT strIdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary,

BAccount from TBNurses where strIdNurse=” OR ‘abcd’=‘abcd’ –‘ AND StrPassword=”

Let us assume that the first filter applied by the FingerPrint agent did not detect a
malicious code and the query continues to the Anomaly agent for its classification in
the next layer. Applying a syntactic analysis on the text string for the SQL query, the
following values, as listed in the table 10, would be generated.

Following the procedure as explained in section 4.1, the correlation data are eliminated
and the initial data from the neural network are normalized within the range [0, 1]. Table
11 presents the results of the normalization of the values for the new case.

SCMAS 23

Table 10. Effectiveness of the prediction techniques

Fields Values IdField
Affected table 1 c1
Affected field 9 c2

Command type 0 c3
Word GroupBy 0 c4
Word Having 0 c5

Word OrderBy 0 c6
Numer And 1 c7
Numer Or 1 c8

Number literals 4 c9
Number LOL 1 c10

Length SQL String 165 c11
Query Category 2 c12

Table 11. Description of the new normalized case

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
0 0 0 0 0 0 0 1 0, 4 0, 5 0, 036 0

To complete this process, the Anomaly agent executes a CBR cycle in order to classify
the new SQL string.

• A cosine similarity algorithm is applied in order to recover the cases that have a 90%
similarity rate to the new case. Table 12 lists the similar cases (SQL strings) that
were recovered from the memory of cases.

Table 12. Structure of a case for user behavior prediction problem

SELECT strIdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary, BAccount

FROM TBPatients where strIdNurse=” OR 1=1 --’ AND StrPassword=”

SELECT strIdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary, BAccount

FROM TBPatients where strIdNurse=’mysql.user’ --’ AND StrPassword=”

SELECT strIdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary, BAccount

FROM TBPatients where strIdNurse=” OR 2=2 --’ AND StrPassword=”

SELECT strIdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary, BAccount

FROM TBPatients where strIdNurse=” OR 1=2 --’ AND StrPassword=”

SELECT strIdNurse, FirstName, SecondName, BirthDate, Age, Sex, SInsurance, salary, BAccount

FROM TBPatients where strIdNurse=” OR ’111’=’111’ ’-- AND StrPassword=”

The description of the cases that have been recovered and normalized with the
corresponding similarity measure is shown in Table 13. The results fall within the
range [0, 1] where the larger the value, the more similar the recovered case is to the
new case.

• In the second phase of the CBR cycle both of the combined networks are trained
with cases that were recovered from the first phase of the CBR cycle. Table 14 shows
the results obtained during the training period for the 5 most similar cases, and the
estimate for the new case that has been classified.

• The solution is evaluated in the third phase of the CBR cycle. The exit value for the
new case (0.278) indicates that the SQL string from the user request is classified as

24 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Table 13. Description of cases recovered and normalized with the simi-
larity measure corresponding to the new case

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 Measure of Similarity
0 0 0 0 0 0 0 1 0, 4 0, 5 0, 036 0 0, 858
0 0 0 0 0 0 0, 5 0 0 0 0, 072 0 0, 370
0 0 0 0 0 0 0, 5 1 0, 4 0, 5 0, 036 0 0, 930
0 0 0 0 0 0 0, 5 1 0, 4 0, 5 0, 036 0 0, 930
0 0 0 0 0 0 0, 5 1 0, 4 0, 5 0, 133 0 0, 933

Table 14. Classification obtained by the mixture of neural networks shown
in Table 12, and the estimate for the new case

Case Result
1 0, 231
2 0, 298
3 0, 211
4 0, 223
5 0, 214

New Case 0, 278

an attack and does not require evaluation by an expert since it falls outside of the
given interval.

• Finally, an expert assigns an efficiency rate of 98% in the learning phase and the
case is stored in the memory of cases to be used in future situations.

Figure 8 provides a graphical representation of the CBR phase, showing the entry and
exit data and the tasks that were completed in each phase.

Figure 8. Representation of the CBR cycle within the Anomaly agent

The next section presents the results obtained after executing the test.

SCMAS 25

6. Results and Conclusion. The problem of SQL injection attacks on databases sup-
poses a serious threat against information systems. This paper has presented a novel
solution based on a new hierarchical multi-agent architecture for detecting SQL injection
attacks. This solution combines the advantages of multi-agent systems, such as autonomy
and distributed problem solving, with the adaptation and learning capabilities of CBR
systems. Because current approaches are based on centralized strategies [26, 29, 30],
the architecture proposed in this study offers a novel perspective in the detection and
prediction of SQL injection attacks. The SCMAS architecture provides a hierarchical,
distributed structure, which allows a more efficient balance and distribution of the tasks
involved in the problem of detecting, classifying, blocking and predicting malicious SQL
injection attacks on databases. In addition, this paper has presented two interesting
mechanisms for improving the classifications of SQL attacks and the prediction of attacks
from malicious users. Both mechanisms were implemented through SQLCBR agents, a
special type of CBR-BDI agent [16] which demonstrates a great capacity for learning and
adaptation. The SQLCBR Anomaly agent is a classifier agent that, based on the phi-
losophy of the case-based reasoning mechanisms [17], proposes a new strategy that uses
past experiences to classify SQL injection attacks. This strategy differs in its conception
from other current strategies and, moreover, incorporates the prediction capabilities that
characterize neural networks. The Anomaly agent integrates an innovative model into its
CBR cycle consisting of a mixture of neural networks that provides a significant reduc-
tion in the error rate during the classification of attacks, and improves the efficiency of
the current methods. The second type of SQLCBR agent is the Forecaster agent, which
incorporates a mechanism based on time series analysis into the reuse stage of its CBR
cycle in order to predict the behaviour of the malicious users, thus allowing preventive
actions to minimize possible attacks on the database.

To check the validity of the proposed model, we elaborated a series of tests which were
executed on a memory of cases, specifically developed for these tests, which generated at-
tack consults. The results obtained are promising, improving in many cases those obtained
with other current techniques, which allows us to conclude that SCMAS can be considered
a good alternative for the detection and prediction of SQL injection attacks. The tests
were conducted in the following way: first, we evaluated the efficiency of the classification
and prediction methods proposed in this research and compared the results obtained to
alternative techniques. Then, we evaluated the global efficiency of the architecture by
comparing different meaningful parameters before and after the implementation of the
system in the test environment. The following paragraphs describe the experiments and
discuss the conclusions obtained.

The classification system integrated within the Anomaly agent provided the results
shown in Table 15, which are promising: it is possible to observe different techniques for
predicting attacks at the database layer and the errors associated with misclassifications.
All the techniques presented in Table 15 have been applied under similar conditions to
the same set of cases, taking the same problem into account in order to obtain a new case
common to all the methods. Note that the technique proposed in this article provides the
best results, with an error in only 0.537% of the cases.

As shown in Table 15, the Bayesian method is the most accurate statistical method since
it is based on the likelihood of the events observed. It has the disadvantage of determining
the initial parameters of the algorithm, although it is the fastest of the statistical methods.
After taking the errors obtained with the different methods into account, the regression
models follow both the neural networks and the Bayesian methods. Because of the non
linear behaviour of the hackers, linear regression offers the worst results, followed by the
polynomial and exponential regression methods. This can be explained by looking at

26 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Table 15. Results after testing different classification techniques

Forecasting Techniques Success (%) Approximated Time (secs)
Anomaly Agent (mixture NN) 99.5 2

Back-Propagation Neural Networks 99.2 2
Bayesian Forecasting Method 98.2 11

Exponential Regression 97.8 9
Polynomial Regression 97.7 8

Linear Regression 97.6 5

hacker behaviour: as hackers break security measures, the time they have for obtaining
information via their attacks decreases exponentially. The empirical results show that
the best methods are those that involve the use of neural networks, and if we consider
a mixture of two neural networks, the predictions are notably improved. These methods
are more accurate than statistical methods for detecting attacks to databases because the
behaviour of the hacker is not linear, but dynamic and chaotic.

The advantage of using a mixture of neural networks not only improves performance
provided by other classification techniques, but also improves performance that only neu-
ral networks can provide. The mixture has the advantage of reducing the number of cases
in which the classifier agent cannot make decisions, thus requiring human intervention in
only a few cases. We were able to check the decision of the mixture of networks with that
of the human expert for those cases in which a single network did not decide, and found
that both the mixture of networks and the human expert were in agreement in 99% of the
cases. Figure 9 shows the effectiveness in the classification for two individual networks
with a distinct activation function, and the effectiveness of the mixture of networks.

Figure 9. Effectiveness in the individual classification of networks and the
mixture of networks.

The prediction mechanism integrated within the Forecaster agent also provided good
results, as can be seen in Table 16. Looking at the behaviour of the time series analysis, we
have observed that when the number of training patterns for the neural network increases,
prediction error decreases. It is important to note that the number of training patterns
is the result of applying filters such as the similarity-based algorithm and the correlation

SCMAS 27

function. These filters meaningfully reduce the quantity of cases and allow improved
performance during the training stage. The graph in Figure 10 indicates the success of
the predictions with regards to the number of training patterns presented in Table 16.

Table 16. Successful (%) depending on number of training patterns

Number of patterns of training Successful (%)
1000 99.5
900 99.1
700 98.5
500 98.6
300 96.8
100 89

Figure 10. Sucessful (%) vs. Number of patterns

Figure 10 shows the percentage of predictions with regards to the number of patterns in
the training phase. It is clear that with a large number of training patterns the percentage
of successful predictions improves. Since we are working with CBR systems, which depend
on large amounts of data stored in the memory of cases for each user, the percentage of
successful predictions increases, as demonstrated in Figure 10. CBR systems need initial
information (past experiences) to generalize efficient results. In addition, the time series
analyses also need the data that is passed on in order to allow reliable predictions. Figure
11 shows that a period of 4 weeks implies an acceptable threshold to carry out predictions
with a high rate of success.

In order to analyze the impact of multi-agent architecture proposed in the context of
this investigation, we have evaluated the percentage of attacks detected before and after
implementing the system, as shown in Figure 12. Figure 12 shows a progressive increase
in the percentage of attacks detected successfully over time. As expected, the system
does not initially provide a high detection rate, since it works with synthetic data. But

28 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

Figure 11. Success prediction according to the number of weeks from the database

as time passes, the system learns and adapts to the environment in which it is located.
Thus, with four weeks of stored data, it is possible to obtain an attack detection rate
above 87%.

Figure 12. Progressive increase in the detection of attacks based on time.

Another meaningful indicator for evaluating the classification system of SQL injection
attacks is the percentage of false positives identified by the system. This is an important
parameter, because classifying queries as attacks when they are not so can cause serious
delays in the system and discomfort to users. The percentages of false positives caused
before and after implementing the system are shown in Figure 13. As shown, the SCMAS
architecture has adapted itself gradually over time. The results obtained during the first
three weeks exceeded the percentage of error obtained without the implementation of the
system. However, after the fourth week the SCMAS system learns and reduces the rate
of false positives.

As mentioned in subsection 4.1, user requests can be classified as attack, not attack
or suspicious. The classification of suspected attacks reduces the success rate of the
system and requires intervention by a human expert. That is why we have evaluated
the percentage of suspicious requests before and after implementing the system. Figure
14 shows the percentage of suspicious requests identified by SCMAS compared to those

SCMAS 29

Figure 13. Percentage of false positives caused before and after the intro-
duction of SCMAS.

identified by a human expert. As shown in Figure 14, the SCMAS system provides rates
of 36.8% initially, but this error rate decreases quickly, falling to 4.3% in the fourth week
of operation.

Figure 14. Percentage of suspicious requests before and after implemented
SCMAS system.

The architecture presented in this paper provides a novel strategy for detecting SQL
injection attacks. The results are promising and allow us to conclude that the SCMAS
architecture considerably improves results provided by current technologies. SQLCBR
agents are well-suited to the prediction and classification tasks, and improve current
techniques. However, there is still much work to do, especially checking the validity
of our architecture in heterogeneous real environments. Moreover, some alternatives to
optimize the effectiveness in the retrieval and reuse stages will be considered [33, 45].
These are our next challenges.

Acknowledgment. This work has been supported by the Spanish Ministry of Science
and Technology project TIN2006-14630-C03-03, the JCyL SA071A08 project and The
Professional Excellence Program 2006-2010 IFARHU-SENACYT-Panama.The authors
also gratefully acknowledge the helpful comments and suggestions of the reviewers, which
have improved the presentation.

30 J. BAJO, J. M. CORCHADO, C. PINZÓN, Y. DE PAZ, B. PÉREZ-LANCHO

REFERENCES

[1] A. Aamodt and E. Plaza, Case-based reasoning: foundational issues, methodological variations, and
system approaches, AI Communications, vol.7, no.1, pp.39-59, 1994.

[2] A. Abraham, R. Jain, J. Thomas and S. Y. Han, D-SCIDS: Distributed soft computing intrusion
detection system, Journal of Network and Computer Applications, vol.30, no.1, pp.81-98, 2007.

[3] J. Bajo, V. Julin, J. M. Corchado, C. Carrascosa, Y. De Paz, V. Botti and J. F. De Paz, An execution
time planner for the ARTIS agent architecture, Engineering Applications of Artificial Intelligence,
vol.21, no.5, pp.769-784, 2008.

[4] J. Bajo, J. F. De Paz, D. Tapia and J. M. Corchado, Distributed Prediction of Carbon Dioxide
Exchange Using CBR-BDI Agents, International Journal of Computer Science, pp.16-25, 2007.

[5] J. Bajo, A. De Luis, A. Gonzalez, A. Saavedra and J. M. Corchado, A Shopping Mall Multiagent
System: Ambient Intelligence in Practice. In: 2nd International Workshop on Ubiquitous Computing
& Ambient Intelligence, pp.115-125, 2006.

[6] F. Bergenti and A. Poggi, LEAP: A FIPA Platform for Handheld and Mobile Devices, In: Intelligent
Agents VIII, Springer-Verlag, London, UK, pp.436-446, 2002.

[7] E. Bertino and R. Sandhu, Database Security-Concepts, Approaches, and Challenges. In: IEEE
Transactions on Dependable and Secure Computing, IEEE Computer Society, Los Alamitos, CA,
USA, pp.2-19, 2005.

[8] S. W. Boyd and A. D. Keromytis, SQLrand: Preventing SQL Injection Attacks. In: Applied Cryp-
tography and Network Security, pp.292-302, 2004.

[9] M. E. Bratman, D. J. Israel and M. E. Pollack, Plans and Resource-Bounded Practical Reasoning.
In: Philosophy and AI: Essays at the Interface, The MIT Press, pp.349-355, 1988.

[10] B.C. Chaib-draa and F. Dignum, Trends in agent communication language, Computational Intelli-
gence, vol.18, pp.89-101, 2002.

[11] Z. Chen, H. Wang, A. Abraham, C. Grosan, B. Y. Y Chen, and L. Wang, Improving Neural Net-
work Classification Using Further Division of Recognition Space, International Journal of Innovative
Computing, Information and Control, vol.4, 2008.

[12] A. S. Christensen, A. Mller and M. I. Schwartzbach, Precise Analysis of String Expressions, In: 10th
International Static Analysis Symposium, Springer-Verlag, pp.1-18, 2003.

[13] W. R. Cook and S. Rai, Safe query objects: statically typed objects as remotely executable queries,
In: 27th international conference on Software engineering, ACM, New York, USA, pp.97-106, 2005.

[14] J. M. Corchado, M. Glez-Bedia, Y. De Paz, J. Bajo and J. F. De Paz, Replanning Mechanism
for Deliberative Agents in Dynamic Changing Environments. Computational Intelligence, vol.24,
pp.77-107, 2008.

[15] J. M. Corchado, J. Bajo, Y. De Paz and D. Tapia, Intelligent environment for monitoring Alzheimer
patients, agent technology for health care, Decision Support Systems 44(2), pp.382-396, 2007.

[16] J. M. Corchado, J. Pavón, E. S. Corchado and L. F. Castillo, Development of CBR-BDI Agents. In:
Advances in Case-Based Reasoning, Springer Berlin / Heidelberg, 2004.

[17] J. M. Corchado and R. Laza, Constructing deliberative agents with case-based reasoning technology,
International Journal of Intelligent Systems, vol.18, pp.1227-1241, 2003.

[18] A. Damba and S. Watanabe, Hierarchical Control in a Multiagent System, International Journal of
Innovative Computing Information and Control, vol.4, no.12, pp.3091-3100, 2008.

[19] Y. De Paz, Mixture of Weibull distributions by means of Artificial Neural Networks with censored
data, PhD thesis, Salamanca University, 2008.

[20] FIPA, Foundation for Intelligent Physical Agents, available: http://www.fipa.org, [Accessed 15 Au-
gust 2007], 2007.

[21] D. Florescu, A. Levy, and A. Mendelzon, Database techniques for the World-Wide Web: a survey.
ACM SIGMOD Record, vol.27, no.3, pp.59-74, 1998.

[22] V. H. Garcia, R. Monroy, and M. Quintana, Web Attack Detection Using ID3. In: IFIP International
Federation for Information Processing, Springer, vol.218, pp.323-332, 2006.

[23] M. P.Georgeff and A.L. Lansky, Reactive Reasoning and Planning, In: Advancement of Artificial
Intelligence, American Association of Artificial Intelligence, pp.677-682, 1987.

[24] C. Gould, Z. Su and P. Devanbu, JDBC Checker: A Static Analysis Tool for SQL/JDBC Ap-
plications. In: 26th International Conference on Software Engineering, IEEE Computer Society,
Washington, DC, USA, pp.697-698, 2004.

SCMAS 31

[25] W. G. Halfond, J. Viegas and A. Orso, A Classification of SQL-Injection Attacks and Counter-
measures, In: Proceedings of the IEEE International Symposium on Secure Software Engineering,
Arlington, VA, USA, 2006.

[26] W. G. Halfond and A. Orso, AMNESIA: Analysis and Monitoring for NEutralizing SQL-injection
attacks. In: 20th IEEE/ACM international Conference on Automated software engineering, ACM,
New York, USA, pp.174-183, 2005.

[27] Z. Hayat, J. Reeve and C. Boutle, Ubiquitous security for ubiquitous computing. Information Security
Technical Report, vol.12, no.3, pp.172-178, 2007.

[28] D. R. Hernandez, Introduction to the Bayesian Analysis, OceanDocs, 2007
[29] Y. W. Huang, S. K. Huang, T. P. Lin and C. H. Tsai, Web application security assessment by fault

injection and behavior monitoring, In: 12th international conference on World Wide Web, ACM,
New York, USA, pp.148-159, 2003.

[30] Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama and Y. Takahama, Sania: Syntactic and Semantic
Analysis for Automated Testing against SQL Injection, In: 23rd Annual Computer Security Appli-
cations Conference, IEEE Computer Society, pp.107-117, 2007.

[31] Y. Li, S. Shiu and S. Pal, Combining feature reduction and case selection in building CBR classifiers,
IEEE Transactions on Knowledge and Data Engineering, vol.18, no.3, pp.415-429, 2006.

[32] Y. Li, S. K. Shiu, S. Pal and J. K. Liu, A rough set-based CBR approach for feature and docu-
ment reduction in text categorization, In: Third International Conference on Machine Learning and
Cybernetics, pp.2438-2443, 2004.

[33] C. Liu, New Evolutionary Algorithm for Multi-objective Constrained Optimization. ICIC Express
Letters, vol.2, no.4, pp.339-344, 2008.

[34] W. L. Low, J. Lee and P. Teoh, DIDAFIT: Detecting Intrusions in Databases Through Fingerprinting
Transactions, In: Databases and Information Systems Integration, pp.121-128, 2002.

[35] Q. Mart́ın, M. Cabero and Y. De Paz, Statistical treatment of data with SPSS. Resolved and
commented practices, Thomson, 2007.

[36] R. A. McClure and I. H. Krger, SQL DOM: compile time checking of dynamic SQL statements, In:
27th international conference on Software engineering, ACM, New York, USA, pp.88-96, 2005.

[37] S. Mukkamala, A. H. Sung, A. Abraham, Intrusion detection using an ensemble of intelligent
paradigms Journal of Network and Computer Applications, vol.28, no.2, pp.167-182, 2005.

[38] J. Quinlan, R. L. Rivest, Inferring decision trees using the minimum description length principle,
Information and Computation, vol.80, no.3, pp.227-248, 1989.

[39] E. Rescorla and A. Schiffman, The Secure HyperText Transfer Protocol, RFC Editor, United States,
http://www.rfc-editor.org/rfc/rfc2660.txt, 1999

[40] M. R. Rieback, P. N. Simpson, B. Crispo and A. S. Tanenbaum, RFID malware: Design principles
and examples, Pervasive and Mobile Computing, vol.2, no.4, pp.405-426, 2006

[41] F. Rietta, Application layer intrusion detection for SQL injection. In: 44th annual Southeast regional
conference, ACM, New York, USA, pp.531-536, 2006.

[42] J. Skaruz and F. Seredynski, Recurrent neural networks towards detection of SQL attacks, In:
IPDPS’07: Parallel and Distributed Processing Symposium, IEEE International, pp.1-8, 2007.

[43] T. Uno, H. Katagiri and K. Kato, An Evolutionary Multi-Agent Based Search Method for Stackel-
berg Solutions of Bilevel Facility Location Problems International Journal of Innovative Computing,
Information and Control, vol.4, no.5, pp.1033-1043, 2008.

[44] F. Valeur, D. Mutz and G. Vigna, A Learning-Based Approach to the Detection of SQL Attacks.
In: Intrusion and Malware Detection and Vulnerability Assessment, Springer Berlin/Heidelberg,
pp.123-140, 2005.

[45] Y. Wang, Fuzzy Clustering Analysis by Using Genetic Algorithm. ICIC Express Letters, vol.2, no.4,
pp.331-337, 2008.

[46] G. Wassermann and Z. Su, An Analysis Framework for Security in Web Applications, In: FSE
Workshop on Specification and Verification of Component-Based Systems, pp.70-78, 2004.

[47] M. Woolridge and M.J.Wooldridge, Introduction to Multiagent Systems, John Wiley & Sons, Inc.,
New York, USA, 2002.

