
JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009 11

A Hybrid Agent-based Classification Mechanism to
Detect Denial of Service Attacks

Cristian I. Pinzón, Juan F. De Paz, Sara Rodrı́guez, Javier Bajo and Juan M. Corchado

Abstract—This paper presents the core component of a solution
based on agent technology specifically adapted for the classifi-
cation of SOAP messages. The messages can carry out attacks
that target the applications providing Web Services. One of the
most common attacks requiring novel solutions is the denial of
service attack (DoS), caused for the modifications introduced in
the XML of the SOAP messages. The specifications of existing
security standards do not focus on this type of attack. This article
presents an advanced mechanism of classification designed in
two phases incorporated within a CBR-BDI Agent type. This
mechanism classifies the incoming SOAP message and blocks the
malicious SOAP messages. Its main feature involves the use of
decision trees, fuzzy logic rules and neural networks for filtering
attacks. These techniques provide a mechanism of classification
with the self-adaption ability to the changes that occur in the
patterns of attack. A prototype was developed and the results
obtained are presented in this study.

Index Terms—multi-agent systems, case-based reasoning, DoS
Attack, SOAP message, XML security.

I. INTRODUCTION

THE communication based on Service Oriented Architec-
ture Web (SOA) is carried out by XML-based messages,

called SOAP messages. This message exchange process is one
of the key elements required in SOA environments for system
integration [1]. The SOAP message payload often consists of
sensitive information, which is sent through insecure channels
such as HTTP connections. If a malicious user playing the
role of a middleman intercepts a message between sender and
recipient, it can result in a series of malicious tasks carried
out over the captured message.

DoS attacks are due to the fact that XML messages must
be parsed in the server, which opens the possibility of an
attack if the messages themselves are not well structured or if
they include some type of malicious code. Resources available
in the server (memory and CPU cycles) of the provider can
be drastically reduced or exhausted while a malicious SOAP
message is being parsed. A DoS attack is successfully carried
out when it manages to severely compromise legitimate user
access to services and resources.

A number of technologies and solutions have been proposed
for addressing the secure exchange of SOAP message such

Cristian I. Pinzon is with The Technological University of Panama.
E-mail: cristian.pinzon@utp.ac.pa

Juan F. De Paz is with University of Salamanca.
E-mail: fcofds@usal.es

Sara Rodrı́guez is with University of Salamanca.
E-mail: srg@usal.es

Javier Bajo is with University of Salamanca.
E-mail: jbajope@usal.es

Juan M. Corchado is with University of Salamanca.
E-mail: corchado@usal.es

as WS-Security [2], WS-SecurityPolicy [3], WS-Trust [4],
WS-SecureConversation [5] etc. All these standards focus on
the aspects of message integrity and confidentiality and user
authentication and authorization. None of the WS-Security
Standards provide full security, leaving gaps that can be
exploited by any malicious user.

Then, it is necessary to investigate in novel methods to
protect the servers from denial of services attacks (DoS),
which cause malicious or altered Web Services, and affect
the availability of the Web Services [6]. This paper presents
the core component of a strong solution based on a multi-
agent architecture for tackling the security issue of the Web
Service. This core is embedded in a CBR-BDI [7] deliberative
agent based on the BDI (Belief, Desire, Intention) [8] model
specifically adapted for preventing many attacks over web
services. Our study applies a solution in two phases that
include novel case-based reasoning (CBR) [9] classification
mechanisms. The first phase incorporates decision tree and
fuzzy logic rules [10] while the second phase incorporates
neural networks capable of making short term predictions [11].
The idea of a CBR mechanism is to exploit the experience
gained from similar problems in the past and to adapt a
successful solution to the current problem. The CBR engine
initiates what is known as the CBR cycle, which is comprised
of 4 phases. The CBR-BDI agent explained in this work uses
the CBR concept to gain autonomy and improve its problem-
solving capabilities. The approach presented in this paper is
entirely new and offers a different way to confront the security
problem in SOA environments.

The rest of the paper is structured as follows: section 2
presents the problem that has prompted most of this research.
Section 3 focuses on the structure of the classifiers agents
which facilitates classification of SOAP message, and section
4 provides a detailed explanation of the classification model
integrated within the type of classifier agent. Finally, section
5 presents the conclusions obtained by the research.

II. WEB SERVICE SECURITY PROBLEM DESCRIPTION

A web service is a software module designed to support
interaction between heterogeneous groups within a network.
In order to obtain interoperability between platforms, commu-
nication between web servers is carried out via an exchange of
messages. These messages, referred to as SOAP messages, are
based on standard XML (eXtensible Markup Language) and
are primarily exchanged using HTTP (Hyper Text Transfer
Protocol) [12].

One of the most frequent techniques of a DoS attack is
to exhaust available resources (memory, CPU cycles, and



12 JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

bandwidth) on the host server. The probability of a DoS attack
increases with applications providing web services because of
their intrinsic use of the XML standard. The server uses a
parser, such as DOM, Xerces, etc. to syntactically analyze all
incoming XML formatted SOAP messages. When the server
draws too much of its available resources to parse SOAP
messages that are either poorly written or include a malicious
code, it risks becoming completely blocked. Attacks usually
occur when the SOAP message either comes from a malicious
user or is intercepted during its transmission by a malicious
node that introduces different kinds of attacks.

Security is one of the greatest concerns within web service
implementations. The following list contains descriptions of
different types of attacks, compiled from those noted in [13],
[14], [15].

• Oversize Payload: When it is executed, it reduces or
eliminates the availability of a web service while the
CPU, memory or bandwidth are being tied up by a
massive message dispatch with a large payload.

• Coercive Parsing: Just like a message written with XML,
an XML parser can analyze a complex format and lead
to a denial of service attack because the memory and
processing resources are being used up.

• Injection XML: This is based on the ability to modify the
structure of an XML document when an unfiltered user
entry goes directly to the XML stream or the message is
captured and modified during its transmission.

• Parameter Tampering: A malicious user employs web
service entries to manually or automatically (dictionaries
attack) execute different types of tests and produce an
unexpected response from the server.

• SOAP header attack: Some SOAP message headers are
overwritten while they are passing through different
nodes before arriving at their destination. It is possible
to modify certain fields with malicious code.

• Replay Attack: Sent messages are completely valid, but
they are sent en masse over a small time frame in order
to overload the web service.

All web service security standards focus on strategies inde-
pendent from DoS attacks [6]. In the following, we will revise
those works that focus on denial of web service attacks and
will compare to our approach.

A “XML Firewall”is proposed by [13]. The architecture
of the XML Firewall is divided into three modules, namely
Core Engine, Administrative Interface, and Database. The
Core engine is the main component that processes and handles
SOAP messages. Messages that are sent to a Web Service
are intercepted and parsed to check the validity and the
authenticity of the contents. If the contents of the messages do
not conform to the policies that have been set, the messages
will be dropped by the firewall. Three successfully imple-
mented filtering policies, namely message size filtering, syntax
parsing, and XML schema validation have been tested with
valid and invalid SOAP messages. Gruschka and Luttenberger
[6] propose an application level gateway system “Checkway”.
They focus on a full grammatical validation of messages by
Checkway before forwarding them to the server. To do this,

they consider that Web Service messages are XML documents
and these are usually defined by an XML Schema, written
in the XML Schema definition language-a grammar language
for XML. Checkway generates an XML Schema from a Web
Service description and validates all Web Service messages
against this schema. The approach presents a centralized model
oriented to detect concrete type of attack inside Web Services.
An adaptive framework for the prevention and detection of
intrusions was presented in [14]. Based on a hybrid focus
that combines agents, data mining and fuzzy logic, it is
supposed to filter attacks that are either already known or
new. Agents that act as sensors are used to detect violations
to the normal profile using the data mining technique such as
clustering, association rules and sequential association rules.
The anomalies are then further analyzed using fuzzy logic
to determine genuine attacks so as to reduce false alarms.
If an attack is being detected, a specific component will
act to prevent the attack from happening. An approach to
countering DDoS and XDoS attacks against web services is
presented by [16]. The system carries out request message
authentication and validation before the requests are processed
by the Web Services providers. The scheme has two modes:
the normal mode and the under-attack mode. A component
called “operations provider” decides which mode the system
works in. In the under-attack mode, the service requests need
to be authenticated and validated before being processed. Since
the system is constructed from web services, it can be formed
and reconfigured easily. Finally, a recent solution proposed
by [17] presents a Service Oriented Traceback Architecture
(SOTA) to cooperate with a filter defense system, called
XDetector. XDetector, is a Back Propagation Neural Network,
trained to detect and filter XDoS attack message. SOTA is
a traceback system that is constructed on the basis of Web
Services and is able to traceback to the source of the malicious
message. Once an attack has been discovered and the attacker’s
identity known, XDetector can filter out these attack messages.

Our approach outperforms the existing models with respect
to:
• Learning and Adaptive ability: These features are the

most important of our approach. Our approach includes
one type of intelligent agents that was designed to learn
and adapt to changes in attack patterns and new attacks.

• Tolerance to Failure: Our approach has a design that can
facilitate error recovery through the instantiation of new
agents.

• Scalability: Our approach is capable of growing (by
means of the instantiation of new agents) according to
the needs of its environment.

Our approach presents novel characteristics that have not
heretofore been considered in previous approaches. The next
section presents the architecture in greater detail. The follow-
ing sections detail the internal model of the CBR-BDI agent,
as well as the classification process for SOAP message for
identifying malicious messages.

III. CLASSIFIERS AGENTS INTERNAL STRUCTURE

Agents are characterized by their autonomy; which gives
them the ability to work independently and in real-time



PINZÓN ET. AL.: A HYBRID AGENT-BASED CLASSIFICATION MECHANISM TO DETECT DENIAL OF SERVICE ATTACKS 13

environments [18]. Because of this and their other capacities,
agents are being integrated into security approaches such as
Intrusion Detection Systems (IDS) [19]. However, the use of
agents in these systems focuses on the retrieval of information
in distributed environments, which only takes advantage of
their mobility capacity.

The classification agent presented in this study interacts with
other agents within the architecture. These agents carry out
tasks related to capturing messages, syntactic analysis, admin-
istration, and user interaction. As opposed to the tasks for
these agents, the classification agent executes a classification
of SOAP messages in two phases that we will subsequently
define in greater detail.

In our research, the agents are based on a BDI model
in which beliefs are used as cognitive aptitudes, desires as
motivational aptitudes, and intentions as deliberative aptitudes
in the agents [8]. However, in order to focus on the problem
of the SOAP message attack, it was necessary to provide the
agents with a greater capacity for learning and adaption, as
well as a greater level of autonomy than a pure BDI model
currently possesses. This is possible by providing the classifier
agents with a CBR mechanism [9], which allows them to
“reason” on their own and adapt to changes in the patterns
of attacks.

Case-based Reasoning (CBR) is a type of reasoning based
on the use of past experiences [9]. The purpose of case-
based reasoning systems is to solve new problems by adapting
solutions that have been used to solve similar problems in the
past. The fundamental concept when working with case-based
reasoning is the concept of case. A case can be defined as a
past experience, and is composed of three elements:

• A problem description which describes the initial prob-
lem.

• A solution which provides the sequence of actions carried
out in order to solve the problem.

• The final state which describes the state achieved after
the solution was applied.

A case-based reasoning system manages cases (past ex-
periences) to solve new problems. The way in which cases
are managed is known as the case-based reasoning cycle.
These systems execute the CBR cycle which consists of four
sequential steps: retrieve, reuse, revise and retain [9]. The
method proposed in [20] facilitates the incorporation of case-
based reasoning systems as a deliberative mechanism within
BDI agents, allowing them to learn and adapt themselves,
lending them a greater level of autonomy than what is nor-
mally found in a typical BDI architecture [21]. Accordingly,
our Classifiers agents can reason autonomously and therefore
adapt themselves to changes in the attack patterns. The case-
based reasoning system is completely integrated within the
Classifiers agents. These agents incorporate a “formalism” that
is easy to implement, in which the reasoning process is based
on the concept of intention. Intentions can be seen as cases,
which have to be retrieved, reused, revised and retained. A
direct relationship between case-based reasoning systems and
BDI agents can also be established if the problems are defined
in the form of states and actions.

Case: <Problem, Solution, Result> BDI agent

Problem: initial state Belief: state

Solution: sequence of <action,[intermediate state]> Intention: sequence of <action>

Result: final state Desire: set of <final state>

Our Classifiers agents implement cases as beliefs, intentions
and desires which lead to the resolution of the problem. As
described in [22], [23], each state of a CBR-BDI agent is
considered as a belief, including the objective to be reached.
The intentions are plans of actions that the agent has to
carry out in order to achieve its objectives, which makes each
intention an ordered set of actions. Each change from state to
state is made after carrying out an action (the agent remembers
the action carried out in the past, when it was in a specified
state, and the subsequent result). A desire will be any of the
final states reached in the past (if the agent has to deal with
a situation that is similar to one from the past, it will try to
achieve a result similar to the one previously obtained). The
Classifiers agents used in our solution, use these concepts to
define a case structure for DoS attacks in SOAP messages.

As previously mentioned, the classifier CBR-BDI agent is
the core of the multi-agent architecture and is geared towards
classifying SOAP messages for detecting attacks on web
services. Figure 1 shows the classifier CBR-BDI agents in
each phase of the mechanism of classification. These CBR-
BDI classifier agents will be explained in detail in next section.

IV. MECHANISM FOR THE CLASSIFICATION OF SOAP
MESSAGE ATTACK

The CBR-BDI classifier agent presented in section 3 in-
corporates a case-based reasoning mechanism that allows it to
classify SOAP messages. The mechanism incorporated into the
agent approaches the idea of classification from the perspective
of anomaly-based detection. In the specific case of SOAP
messages, it manages a case memory for each service offered
by the Web Service environment, which permits it to handle
each incoming message based on the particular characteristics
of each web service available. Each new SOAP message sent
to the architecture is classified as a new case study object.
Focusing on the problem that is of interest to us, we will
represent a typical SOAP message which consists of a type of
wrapping that contains an optional heading and a mandatory
body of text with a useful message load, as depicted in figure
2.

Based on the structure of the SOAP messages and the
transport protocol used, we can obtain a series of descriptive
fields to consider. Based on this information, we can present
a two-part strategy for executing the classification process:

A. First Phase of the mechanism of Classification

The main goal of this initial phase is to carry out an effective
classification, but without requiring an excessive amount of
resources and time. As a CBR strategy is used, it is necessary
to define the case structure used by the classifiers CBR-BDI
agents. The fields of the case are obtained from the headers of
the packages of the HTTP\TCP-IP transport protocol. Table
I shows the fields taken into consideration to describe the
problem.



14 JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

Fig. 1. Design of the mechanism of classification - Classifier CBR-BDI
agents

TABLE I
CASE DESCRIPTION - CBR - FIRST PHASE

Fields Type Variable
IDService Int i
SubnetMask String m
SizeMessage Int s
NTimeRouting Int n
LengthSOAPAction Int l
TFMessageSent Int w

Fig. 2. Content and Structure of a SOAP Message

As can be seen in Table I, the description of a case is
given by the tuple c = (i,m, s, n, l, w,R/C.im, xp, xr), where
i represents the service identifier, m the subnet mask, s the
message length, n the number of seconds for the travel of the
message, l the length of the header SoapAction, w the elapsed
time from the arrival of the last n messages, R/C.im is the
solution provided by the decision tree associated to the service
and to the subnet mask, xp represents the class predicted by
the CBR strategy xp ∈ X = {a, g, u}, where a,g,u represent
the values attack, good and undefined, xr is the real class
xr ∈ X = {a, g, u}.



PINZÓN ET. AL.: A HYBRID AGENT-BASED CLASSIFICATION MECHANISM TO DETECT DENIAL OF SERVICE ATTACKS 15

The CBR strategy is integrated into a BDI agent, obtaining
a CBR-BDI agent. The integration of the CBR system and the
BDI agent is defined as follows: beliefs - problem description
and rules; intentions - set of accions and rules that represent
the state transitions required to achieve the final state; desires
- X = {a, g, u}. The initial state is defined by means of the
set of beliefs that store the values for the subnet mask and
the service web identifier, (i,m, φ, φ, φ, φ). The intermediate
states describe the decision process executed, taking into
account the application of rules over the set of rules.

The cases memory contains a set of cases C = {c}
and is fragmented for each of the web services available
in the server. This structure facilitates the depuration and
analysis of the services in an independent manner. Sepa-
rately to the cases memory, the agent incorporates a rules
memory, constructed as a set of inductive rules defined as
R = {r1, . . . , r1} with ri = (l1 ∧ . . . ∧ lm) → xj where
ls = (dts, os,<)/dts ∈ (i,m, s, n, l, w, xp, xr), os ∈ O, with
O = {=, 6=,�,≺,≤,≥}, xj ∈ X . The rules memory is also
fragmented for each of the services and for each of the subnet
mask, in a way that R/C.im represents the rules associated to
those cases belonging to the service i and the subnet mask m.
For notation considerations, to identify a property of a case,
we use the case, a point and the property. For example, cj.m

represents the property m (subnet mask) of the case j.
When the agent receives a request to classify a new case

cn+1, a new execution of a CBR cycle is carried out. The
following paragraphs describe the stages of a CBR cycle
executed in the first phase classification.
• Retrieve: During this stage, those cases associated to

the requested web service and the corresponding rules
memory are retrieved. The storage and recovery of rules
from the rules memory facilitates a notably reduction
of the process time for the classification. The retrieve
strategy is carried out as follows:

– If there is not tree associated to the service and the
subnet mask, then it is necessary to recover the cases
for the service and the subnet mask:

C.im = fs(C) = {cj.im ∈ C/cj.i = cn+1.i, cj.m =
= cn+1.m}

(1)
Where Cj.i represents the case j and i the service
identifier.

– The rules memory associated with the set of cases
R/C.im is retrieved

• Reuse: Knowledge extraction is especially important
when complex algorithms that use hard computing tech-
niques and that generate models in an automatic way
are used. Human experts are much confident when they
know exactly why or at least how a solution to a prob-
lem has been calculated. Classification And Regression
Tree (CART) is a nonparametric statistical method for
extraction of knowledge in classifications. The extracted
information is represented in a binary decision tree, which
allows individuals to be classified from the root node.
Keeping the kind of dependent variable in mind, CART

can be separated into two types: classification tree, if the
dependent variable is categorical; and regression tree in
the case of a continuous dependent variable.
The reuse stage is only executed if not decision tree
R/C.im associated to the cases c.im is available, and in
order to do so, the rules are generated using the CART
algorithm. R/C.im = CART (c.im) where R/C.im is the
rules memory associated to the service identifier and to
the subnet mask. The CART algorithm has been modified
in order to have an automatic discretization of the values
to a set of categories. The modification includes a first
step to normalize the variable into the interval [0, 1] and
then, the values are discretized into one of the following
categories depending on the closest value {very low=0.1,
low=0.3, medium=0.5, high=, 0.7 y very high=0.9}. This
way, the generation of rules using the CART algorithm
is more efficient than working with a greater level of
categories. The discretization is only carried out for the
variables s, n, l, w.

• Revise: Once the set of rules has been retrieved, the
classification for the case cn+1.im is obtained using the
set of rules that previously classified the elements of the
same type cn+1.xp=R/C.im(cn+1). If ri ∈ R/C.im then, it
is the rule that classifies cn+1. The new case is classified
as follows:

– If mi � µ1‖#{cj ∈ Crj /cj.xp = u} � µ2 then, it is
necessary to execute the CBR of the second phase.
Where Cri ⊆ C is the set of cases classified for
ri and mi represents the percentage of misclassified
cases of Crj using the rule rj . # represents the
number of elements of the set. The general idea
is to verify if the error rate of the rule exceeds a
certain threshold, and then, verify that the number
of cases belonging to the set of elements classified
using the rule not exceeds a certain threshold defined
as a function of the total number of elements in Crj .

– Else if #{cj ∈ Crj /cj.xp = g}/#Crj
� αg then the

case is classified as good and the revision finishes.
– Else if #{cj ∈ Crj /cj.xp = u}/#Crj � αs the

case is classified as suspicious and the second phase
classification mechanism is executed.

– Else if #{cj ∈ Crj
/cj.xp = a}/#Crj

� αa the case
is classified as attack and the revision finishes.

• Retain: If the set of rules was generated because it
didn’t previously exist, then R/C.im is stored in the
rules memory if the classification obtained was good. If
the classification was erroneous and the misclassification
was detected by an expert or if the second phase was
invoked, then it is necessary to regenerate the decision
tree: R/C.im = CART (c.im ∪ cn+1).

B. Second Phase of the mechanism of Classification

The fields are extracted from the SOAP message and pro-
vide the case description for second phase of the mechanism
of classification. Table II presents the fields used in describing
the problem for the CBR in this layer.



16 JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

TABLE II
CASE DESCRIPTION - CBR- SECOND PHASE

Fields Type Variable
IDService Int i
SubnetMask String m
SizeMessage Int s
NTimeRouting Int n
LengthSOAPAction Int l
MustUnderstandTrue Boolean u
NumberHeaderBlock int h
NElementsBody int b
NestingDepthElements int d
NXMLTagRepeated int t
NLeafNodesBody int f
NAttributesDeclared int a
CPUTimeParsing int c
SizeKbMemoryParser int k

Applying the nomenclature shown in the table above, each
case description is given by the following tuple:

c = (i,m, s, n, l, u, h, b, d, t, f, a, c, k, P/C.im, xp, xr) (2)

For each incoming message received by the agent and
requiring classification, we will consider both the class that
the agent predicts and the class to which the message actually
belongs. xp represents the class predicted by the classifier
agent belonging to the group. xp ∈ X = {a, g, u}; g
and u represent attack, good and undefined, respectively;
and xr is the class to which the attack actually belongs,
xr ∈ X = {a, g, u}, P/C.im is the solution provided by
the neural network Multilayer perceptron (MLP)associated to
service i and subnet mask m.

The reasoning memory used by the agent is defined by the
following expression: P = {p1, . . . , pn} and is implemented
by means of a MLP neural network. Each Pi is a reasoning
memory related to a group of cases dependent of the service
and subnet mask of the client. The Multilayer Perceptron
(MLP) is the most widely applied and researched artificial
neural network (ANN) model. MLP networks implement
mappings from input space to output space and are normally
applied to supervised learning tasks [24]. The Sigmoidal
function was selected as the MLP activation function, with
a range of values in the interval [0, 1]. It is used to detect if
the SOAP message is classified as an attack or not. The value
0 represents a legal message (non attack) and 1 a malicious
message (attack). The sigmoidal activation function is given
by:

f(x) =
1

1 + e−ax
(3)

The CBR mechanism executes the following phases:

• Retrieve: the cases that are most similar to the current
problem, considering both the type of Web service to
which the message belongs and the subnet mask that
contains the message.

C.im = fs(C) = {cj ∈ C/cj.i = cn+1.i,
cj.m = cn+1.m}

(4)

Once the similar cases have been recovered, the neural
network MLP P/C.im associated to service i and subnet
mask m is then recovered.

• Reuse: The classification of the message is begun in
this phase, based on the subnet mask and the recovered
cases. It is only necessary to retrain the neural network
when it does not have previous training. The entries
for the neural network correspond to the case elements
s, n, l, u, h, b, d, t, f, a, c, k. Because the neurons exiting
from the hidden layer of the neural network contain sig-
moidal neurons with values between [0, 1], the incoming
variables are redefined so that their range falls between
[0.2, 0.8]. This transformation is necessary because the
network does not deal with values that fall outside of
this range. The outgoing values are similarly limited to
the range of [0.2, 0.8] with the value 0.2 corresponding
to a non-attack and the value 0.8 corresponding to an
attack. The training for the network is carried out by the
error Backpropagation Algorithm [25]. The weights and
biases for the neurons at the exit layer are updated by
following equations:

wp
kj(t + 1) = wp

kj(t) + η(dp
k − yp

k)(1− yp
k)yp

kyp
j +

+µ(wp
kj)(t)− wp

kj(t− 1))
(5)

θp
k(t + 1) = θp

k(t) + η(dp
k − yp

k)(1− yp
k)yp

k + µ(θp
k(t)−

−θp
k(t− 1))

(6)
The neurons at the intermediate layer are updated by
following a procedure similar to the previous case using
the following equations:

wp
ji(t + 1) = wp

ji(t) + η(1− yp
j )yp

j (
∑M

k=1(d
p
k − yp

k)
(1− yp

k)yp
kwkj)x

p
i + µ(wp

ji)(t− 1))
(7)

θp
j (t + 1) = θp

j (t) + η(1− yp
j )yp

j (
∑M

k=1(d
p
k − yp

k)
(1− yp

k)yp
kwkj) + µ(θp

j (t)− θp
j (t− 1))

(8)
where wp

kj represents the weight that joins neuron j from
the intermediate layer with neuron k from the exit layer,
t the moment of time and p the pattern in question. dp

k

represents the desired value, yp
k the value obtained for

neuron k from the exit layer, yp
j the value obtained for

neuron j from the intermediate layer, η the learning rate
and µ the momentum. θp

k represents the bia value k from
the exit layer. The variables for the intermediate layer are
defined analogously, keeping in mind that i represents the
neuron from the entrance level, j is the neuron from the
intermediate level, M is the number of neurons from the
exit layer.
When a previously trained network is already available,
the message classification process is carried out in the
revise phase. If a previously trained network is not
available, the training is carried out following the entire



PINZÓN ET. AL.: A HYBRID AGENT-BASED CLASSIFICATION MECHANISM TO DETECT DENIAL OF SERVICE ATTACKS 17

procedure beginning with the cases related to the service
and subnet mask, as shown in equation 9.

Pr = MLP t(c.im) (9)

• Revise: This phase reviews the classification performed
in the previous phase. The value obtained by exiting
the network y = P e

r (cn+1) may yield the following
situations:

– If y � µ1 then it is considered an attack.
– Otherwise, if y ≺ µ2 , then the message is considered

a non-attack or legal.
– Otherwise, the message is marked as suspicious and

is filtered for subsequent revision by a human expert.
To facilitate the revision, an analysis of the neural
network sensibility is shown so that the relevance of
the entrances can be determined with respect to the
predicted value

• If the result of the classification is suspicious or if the
administrator identifies the classification as erroneous,
then the network repeats the training by incorporating
a new case and following the BackPropagation training
algorithm.

Pr = MLP t(c.im ∪ cn+1) (10)

The next section presents the conclusions and results ob-
tained of a developed prototype of our mechanism of classifi-
cation.

V. CONCLUSION

This research has presented the nucleus of a novel solution
that focuses on the protection of web services. The focus in-
corporates case-based reasoning methods, decision trees, fuzzy
logic rules, neural networks, and intelligent agent technology
that allows us to approach the problem of web security from
a perspective based on learning, adaptability and flexibility.

The solution was designed to be carried out in two phases.
In the first phase, a CBR mechanism incorporates decision
trees; fuzzy logic rules generate a preliminary robust solution
regarding the condition of the message, without sacrificing
application performance. If the obtained solution is classified
as suspicious, we then proceed to the second phase of the
process. This phase does involve a more complex process,
with a greater need for resources, and where a second CBR
mechanism embeds within a neural network to generate a final
result.

A prototype of our proposed solution was based on a
classification mechanism and developed in order to evaluate
its effectiveness. The tests of the simulation were carried out
within a small web application developed with Java Server
Page and hosted in a Apache Tomcat 6.0.18 Server by using
as web service engine, Apache Axis2 1.4.1. The tests were
organized within 6 blocks with a specific number of requests
(50, 100, 150, 200, 250 and 300) that allowed evaluating the
effectiveness of the classifier agent in accordance with the
gained experience. Within the blocks were included legal and
illegal requests. Figure 3 shows the results obtained.

Fig. 3. Success of the Classification Mechanism

Figure 3 shows the percentage of prediction with regards to
the number of patterns (SOAP messages) for the classification
mechanism. It is clear that as the number of patterns increases,
the success rate of prediction also increases in terms of
percentage. This is influenced by the fact that we are working
with CBR systems, which depend on a larger amount of data
stored in the memory of cases.

The proposed solution will continue in the investigation and
development for its application in various environments where
its performance can be evaluated and real results obtained.

ACKNOWLEDGMENT

This development has been partially supported by the Span-
ish Ministry of Science project TIN2006-14630-C03-03 and
The Professional Excellence Program 2006-2010 IFARHU-
SENACYT-Panama

REFERENCES

[1] M. A. Rahaman, A. Schaad, and M. Rits, “Towards secure soap message
exchange in a soa,” in SWS ’06: Proceedings of the 3rd ACM workshop
on Secure web services. New York, NY, USA: ACM, 2006, pp. 77–84.

[2] OASIS, “Web services security: Soap message security 1.1 (ws-security
2004).”

[3] G. Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo, H. Granqvist,
and C. Kaler, “Web services security policy language version 1.0 (ws-
securitypolicy),” 2005.

[4] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della, and B. Dixon,
“Web services trust language (ws-trust),” 2004.

[5] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Libera,
and B. Dixon, “Web services secure conversation language (ws-
secureconversation) version 1.1.” 2004.

[6] N. Gruschka and N. Luttenberger, “Protecting web services from dos
attacks by soap message validation,” in SEC, 2006, pp. 171–182.

[7] R. Laza, R. Pavn, and J. M. Corchado, “A reasoning model for CBR BDI
agents using an adaptable fuzzy inference system,” in 10th Conference of
the Spanish Association for Artificial Intelligence, ser. Lecture Notes in
Computer Science, R. Conejo, M. Urretavizcaya, and J. L. P. de la Cruz,
Eds., vol. 3040. Springer, 2003, pp. 96–106.

[8] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI-
architecture,” in Proceedings of the 2nd International Conference on
Principles of Knowledge Representation and Reasoning (KR’91), J. Allen,
R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann publishers Inc.: San
Mateo, CA, USA, 1991, pp. 473–484. [Online]. Available:



18 JOURNAL OF PHYSICAL AGENTS, VOL. 3, NO. 3, SEPTEMBER 2009

[9] A. Aamodt and E. Plaza, “Case-based reasoning: foundational issues,
methodological variations, and system approaches,” AI Commun., vol. 7,
no. 1, pp. 39–59, March 1994.

[10] H. Bittencourt and R. Clarke, “Use of classification and regression trees
(cart) to classify remotely-sensed digital images,” in Geoscience and
Remote Sensing Symposium, 2003. IGARSS ’03. Proceedings. 2003 IEEE
International, vol. 6, July 2003, pp. 3751–3753 vol.6.

[11] J. Shun and H. A. Malki, “Network intrusion detection system using
neural networks,” International Conference on Natural Computation,
vol. 5, pp. 242–246, 2008.

[12] J. Snell, D. Tidwell, and P. Kulchenko, Programming Web Services with
SOAP. O’Reilly, 2001.

[13] Y.-S. Loh, W.-C. Yau, C.-T. Wong, and W.-C. Ho, “Design and imple-
mentation of an xml firewall,” International Conference on Computational
Intelligence and Security, vol. 2, pp. 1147–1150, Nov. 2006.

[14] C. G. Yee, W. H. Shin, and G. S. V. R. K. Rao, “An adaptive
intrusion detection and prevention (id/ip) framework for web services,” in
International Conference on Convergence Information Technology (ICCIT
’07). Washington, DC, USA: IEEE Computer Society, 2007, pp. 528–
534.

[15] M. Jensen, N. Gruschka, R. Herkenhoner, and N. Luttenberger, “Soa
and web services: New technologies, new standards - new attacks,” Fifth
European Conference on Web Services, pp. 35–44, Nov. 2007.

[16] X. Ye, “Countering ddos and xdos attacks against web services,”
in IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, vol. 1, 2008, pp. 346–352.

[17] A. Chonka, W. Zhou, and Y. Xiang, “Defending grid web services from
xdos attacks by sota,” in IEEE International Conference on Pervasive

Computing and Communications, 2009, pp. 1–6.
[18] C. Carrascosa, J. Bajo, V. Julian, J. M. Corchado, and V. Botti, “Hybrid

multi-agent architecture as a real-time problem-solving model,” Expert
Syst. Appl., vol. 34, no. 1, pp. 2–17, 2008.

[19] A. Abraham, R. Jain, J. Thomas, and S. Y. Han, “D-scids: distributed soft
computing intrusion detection system,” Journal of Network and Computer
Applications, vol. 30, no. 1, pp. 81–98, 2007.

[20] J. M. Corchado and R. Laza, “Constructing deliberative agents with case-
based reasoning technology,” International Journal of Intelligent Systems,
vol. 18, pp. 1227–1241, 2003.

[21] M. E. Bratman, D. J. Israel, and M. E. Pollack, “Plans and resource-
bounded practical reasoning,” in Computational Intelligence, vol. 4, 1988,
pp. 349–355.

[22] J. Bajo, J. F. D. Paz, D. I. Tapia, and J. M. Corchado, “Distributed
prediction of carbon dioxide exchange using cbr-bdi agents,” International
Journal of Computer Science, pp. 16–25, 2007.

[23] J. M. Corchado, M. Glez-Bedia, Y. D. Paz, J. Bajo, and J. F. D. Paz,
“Replanning mechanism for deliberative agents in dynamic changing
environments,” Computational Intelligence, vol. 24, pp. 77–107, 2008.

[24] M. Gallagher and T. Downs, “Visualization of learning in multilayer
perceptron networks using principal component analysis,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 33,
no. 1, pp. 28–34, Feb 2003.

[25] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient backprop,” in
Neural Networks: Tricks of the trade, G. Orr and M. K., Eds. Springer,
1998.


