
  

 

 

MEASUREMENT AND CONTROL OF GREENHOUSE GAS EMISSIONS 

FROM BEEF CATTLE FEEDLOTS  

 

 

 

by 

 

 

ORLANDO ALEXIS AGUILAR GALLARDO 

 

 

 

B.S., Universidad Tecnológica de Panamá, 1993 

M.S., Universidad Tecnológica de Panamá, 2006 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Biological and Agricultural Engineering 

 

College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2013 

 

 



  

Abstract 

Emission of greenhouse gases (GHGs), including nitrous oxide (N2O), methane (CH4), 

and carbon dioxide (CO2), from open beef cattle feedlots is becoming an environmental concern; 

however, scientific information on emissions and abatement measures for feedlots is limited. 

This research was conducted to quantify GHG emissions from feedlots and evaluate abatement 

measures for mitigating emissions. Specific objectives were to: (1) measure N2O emissions from 

the pens in a commercial cattle feedlot; (2) evaluate the effectiveness of surface amendments in 

mitigating GHG emissions from feedlot manure; (3) evaluate the effects of water application on 

GHG emissions from feedlot manure; and (4) compare the photo-acoustic infrared multi-gas 

analyzer (PIMA) and gas chromatograph (GC) in measuring concentrations of N2O and CO2 

emitted from feedlot manure.  

Field measurements on a commercial beef cattle feedlot using static flux chambers 

combined with GC indicated that N2O emission fluxes varied significantly with pen surface 

condition. The moist/muddy surface had the largest median emission flux; the dry and 

compacted, dry and loose, and flooded surfaces had significantly lower median emission fluxes.  

Pen surface amendments (i.e., organic residues, biochar, and activated carbon) were 

applied on feedlot manure samples in glass containers and evaluated for their effectiveness in 

mitigating GHG emissions. Emission fluxes were measured with the PIMA. For dry manure, all 

amendments showed significant reduction in N2O and CO2 emission fluxes compared with the 

control (i.e., no amendment). For moist manure, biochar significantly reduced GHG emissions at 

days 10 and 15 after application; the other amendments had limited effects on GHG emissions.  

The effect of water application on GHG emissions from feedlot manure was evaluated. 

Manure samples (with and without water application) were placed in glass containers and 

analyzed for GHG emission using a PIMA. For the dry manure, GHG emissions were negligible. 

Application of water on the manure samples resulted in short-term peaks of GHG emissions a 

few minutes after water application.  

Comparison of the GC and PIMA showed that they were significantly correlated but 

differed in measured concentrations of N2O and CO2. The PIMA showed generally lower N2O 

concentrations and higher CO2 concentrations than the GC.  
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Abstract 

Emission of greenhouse gases (GHGs), including nitrous oxide (N2O), methane (CH4), 

and carbon dioxide (CO2), from open beef cattle feedlots is becoming an environmental concern; 

however, scientific information on emissions and abatement measures for feedlots is limited. 

This research was conducted to quantify GHG emissions from feedlots and evaluate abatement 

measures for mitigating emissions. Specific objectives were to: (1) measure N2O emissions from 

the pens in a commercial cattle feedlot; (2) evaluate the effectiveness of surface amendments in 

mitigating GHG emissions from feedlot manure; (3) evaluate the effects of water application on 

GHG emissions from feedlot manure; and (4) compare the photo-acoustic infrared multi-gas 

analyzer (PIMA) and gas chromatograph (GC) in measuring concentrations of N2O and CO2 

emitted from feedlot manure.  

Field measurements on a commercial beef cattle feedlot using static flux chambers 

combined with GC indicated that N2O emission fluxes varied significantly with pen surface 

condition. The moist/muddy surface had the largest median emission flux; the dry and 

compacted, dry and loose, and flooded surfaces had significantly lower median emission fluxes.  

Pen surface amendments (i.e., organic residues, biochar, and activated carbon) were 

applied on feedlot manure samples in glass containers and evaluated for their effectiveness in 

mitigating GHG emissions. Emission fluxes were measured with the PIMA. For dry manure, all 

amendments showed significant reduction in N2O and CO2 emission fluxes compared with the 

control (i.e., no amendment). For moist manure, biochar significantly reduced GHG emissions at 

days 10 and 15 after application; the other amendments had limited effects on GHG emissions.  

The effect of water application on GHG emissions from feedlot manure was evaluated. 

Manure samples (with and without water application) were placed in glass containers and 

analyzed for GHG emission using a PIMA. For the dry manure, GHG emissions were negligible. 

Application of water on the manure samples resulted in short-term peaks of GHG emissions a 

few minutes after water application.  

Comparison of the GC and PIMA showed that they were significantly correlated but 

differed in measured concentrations of N2O and CO2. The PIMA showed generally lower N2O 

concentrations and higher CO2 concentrations than the GC.  
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Chapter 1 - Introduction 

Animal feeding operations (AFOs) emit various air pollutants, including ammonia (NH3), 

volatile organic compounds (VOCs), particulate matter (PM), and odor. In addition, AFOs are 

considered key sources of anthropogenic greenhouse gases (GHGs) (Mosier et al., 1998). Over 

the past several decades, research had been conducted on agricultural impacts on nitrous oxide 

(N2O) emission fluxes and control measures, including application of nitrification inhibitors for 

agricultural soils and grasslands (Bronson et al., 1992; Di and Cameron, 2002; Malla et al., 2005; 

McTaggart et al., 1997; Menéndez et al., 2006; Parkin and Kaspar, 2006; Weiske et al., 2001a; 

Weiske et al., 2001b). The generation of enteric GHGs from beef cattle has also been 

documented (Boadi et al., 2004; McGinn et al., 2009). Further, N2O emissions associated with 

manure composting have been reported as due to both nitrification and denitrification processes 

(Ma et al., 2008; Maeda et al., 2010).  

In AFOs, meat and milk, among other animal products, generally contain 5 to 20% of the 

total nitrogen (N) present in the animal diet; the remainder is excreted as manure (Mosier et al., 

1998). The manure is deposited on pen surfaces and available for microbiological 

decomposition, resulting in GHG emissions. In cattle feedlots and other AFOs, in which animal 

intake of N is high, more than half of the N intake is excreted as urine (Mosier et al., 1998). 

Urine application on soil samples significantly increased N2O emission rates up to 14 days after 

application (Klein and Logtestijn, 1994). Respiration, nitrification, denitrification, and 

methanogenesis are microbial-related processes that result in emissions of CO2, N2O, and CH4, 

respectively (IPCC, 1996; Li, 2007; Paul, 2007).  Activation of these processes is highly variable 

in time and space because they are regulated by interactions among soil redox potential, pH, 

carbon (C) content, temperature, water content, oxidants (i.e., oxygen (O2), nitrate (NO3
-
), 

manganese (Mn
4+

), iron (Fe
3+

), sulfate (SO4
2-

), CO2), organic matter content, and microbial 

community (Hou et al., 2000; Li et al., 2012; Segers, 1998). 

Beef cattle feedlots and other AFOs are important contributors to the U.S. economy and 

rural communities. In 2011, the economic impact of the beef industry in the U.S. was $44 billion 

in farm gate receipts (National Cattlemen's Beef Association, 2011). The total inventory of cattle 

and calves in the U.S. as of July 1, 2011, totaled 100 million head (USDA, 2011a).  As of 

December 2011, more than 75% of the total “cattle on feed” in large feedlots, those with capacity 
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of 1,000 or more head (USDA, 2009), were located in the High Plains states of TX, NE, KS, and 

CO (USDA, 2011b). According to the 2007 Census of Agriculture, approximately 34% of them 

are produced on large feedlots (USDA, 2009). Moreover, some feedlots have capacities larger 

than 30,000 head. Unfortunately, beef cattle feedlots could affect air quality through emissions of 

pollutants such as NH3, VOCs, PM, and GHGs. Greenhouse gas emissions from beef cattle 

feedlots may also be an important component of the national air emissions inventory. Despite 

this, limited scientific information is available on emission rates of GHGs from pen surfaces in 

beef cattle feedlots (Woodbury et al., 2001), as well as on control measures to minimize those 

emissions. As such, it is expected that in the near future there will be a growing effort to quantify 

and reduce air pollutant emissions from beef cattle feedlots. 

Static flux chambers (SFCs) have been widely used in measuring emission fluxes of 

several trace gases from soil surfaces (Conen and Smith, 2000; Greatorex, 2000; Hutchinson and 

Livingston, 2001; Hutchinson et al., 2000; Kroon et al., 2008; Livingston et al., 2006; Venterea, 

2010), due to their simplicity, ease of fabrication (De Klein et al., 1999; Reichman and Rolston, 

2002), low cost, and ease of operation (Healy et al., 1996). The SFCs are commonly used in 

combination with gas chromatographs (GCs) for the analysis of gas samples. Using GC does not 

allow for direct gas readings in the field (Predotova et al., 2011). Moreover, this method is 

expensive, time-consuming (Spencer et al., 2001), and results are obtained several days after 

field sampling. As an alternative to sample collection and analysis with the GC, portable gas 

analyzers are being used for continuous measurement of gas concentrations. The photo-acoustic 

infrared multi-gas analyzer (PIMA) is a portable and accurate gas monitor commonly used to 

measure concentrations in air and stack emissions of almost any gas that absorbs infrared 

radiation (California Analytical Instruments, 2012). The use of PIMA directly connected to SFC 

might overcome the disadvantage of using GC for the analysis of gas samples collected with 

SFCs in the field. The portability of PIMA as well as the rapid and easy measurement, linearity 

of gas concentrations and its capacity of measuring up to five gases simultaneously in situ, are 

significant advantages over the GC technique (Ambus and Robertson, 1998; De Klein et al., 

1999; Iqbal et al., 2012; Predotova et al., 2011; Yamulki and Jarvis, 1999). 
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 1.1. Rationale  

Concerns on the increased anthropogenic emissions of GHGs (i.e., CO2, N2O, and CH4), 

the current role of animal agriculture in climate change, and the limited scientific information on 

GHG processes and emissions from beef cattle feedlots provided the impetus for this study. It is 

important to understand the processes and factors that affect GHG emissions from feedlots as 

well as to identify abatement measures for minimizing GHG emissions because: (i) 

anthropogenic emissions of GHGs have driven global warming during the last century (Li, 2007; 

Montzka et al., 2011), (ii) agricultural operations ranked fourth with 13.5 % in total 

anthropogenic GHG emissions (IPCC, 2007; Marinho et al., 2004), (iii) AFOs are key sources of 

anthropogenic GHGs (Mosier et al., 1998), and (iv) beef cattle feedlots are important 

contributors to the nation’s economy and rural communities of the U.S. (National Cattlemen's 

Beef Association, 2011). Therefore, understanding the processes of GHG emissions from 

feedlots and identifying abatement measures to minimize those emissions are critical to the 

economic and environmental sustainability of this important agricultural activity as well as to 

contribute in reducing environmental pollution at local, regional and global scales. 

This work provides scientific and technical information that can contribute to better 

understanding of the emissions of GHGs from beef cattle feedlots, as well as on the abatement 

measures to minimize those emissions. Because gas and other pollutants emitted from cattle 

feedlots may affect air quality at local, regional and global scales, this research will also 

contribute to the same scales. At the local scale, neighboring and rural communities that are 

economically and environmentally influenced by large commercial feedlots might benefit from 

this work because it provides information on GHG emission fluxes that can be expected. Once 

abatement measures for GHG emissions are implemented, it is expected that neighboring 

communities will be exposed to less pollutants. Feedlot operators will benefit because once the 

emission process of GHGs are well understood, mitigating measures can be implemented. At the 

regional and global scales, information from this work might be useful as preliminary step to 

understand and better estimate N2O emissions from commercial beef cattle feedlots. New and 

more appropriate emission standards or guidelines might be developed to appropriately estimate 

N2O emissions as well as to implement new air regulations to the sector. 
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 1.2. Objectives   

The main objective of this research was to quantify GHG emissions from feedlots and 

evaluate abatement measures for mitigating emissions. Specific objectives were as follows: 

1. Measure the N2O emission fluxes from pen surfaces in a commercial open-lot beef cattle 

feedlot, as affected by pen surface characteristics and weather conditions. 

2. Evaluate the effectiveness of surface amendments in mitigating GHG emissions from 

feedlot manure. 

3. Evaluate the effects of water application on GHG emissions from feedlot manure. 

4. Compare the photo-acoustic infrared multi-gas analyzer (PIMA) and gas chromatograph 

(GC) in measuring the concentrations of N2O and CO2 emitted from feedlot manure. 
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Chapter 2 - Review of Literature 

 2.1. Greenhouse Gas Formation  

 2.1.1. Mechanisms of greenhouse gas formation in soils 

In most soils, microorganisms play an important role in the production or consumption of 

greenhouse gases (GHGs), including nitrous oxide (N2O), methane (CH4), and carbon dioxide 

(CO2). The soil microbiological processes responsible for these GHGs are nitrification, 

denitrification, methanogenesis, and respiration. Those processes are regulated by interactions 

among soil reduction-oxidation (redox) potential, pH, carbon (C) content, temperature, water 

content, and oxidants, including oxygen (O2), nitrate (NO3
-
), manganese (Mn

4+
), iron (Fe

3+
), 

sulfate (SO4
2-

), CO2, and hydrogen (H2) (Hou et al., 2000; Li et al., 2012; Li, 2007). To survive, 

grow, and reproduce, most soil microorganisms need a source of C as basic building block for 

new cells; they obtain energy by catalyzing redox reactions, in which inorganic compounds 

accept electrons (electron acceptors), allowing the complete oxidation of organic substrates 

(electron donors) (NRC, 1993a). To accomplish this process, electrons are transferred from the 

organic C substrate to an electron acceptor. Under aerobic conditions, most soil microbial cells 

use O2 as electron acceptor, releasing CO2 into the atmosphere (Li, 2007). When the O2 

concentration within the soil decreases, the activity of aerobic microorganisms is depressed, but 

a special group of microorganisms, capable of using NO3
-
 as an electron acceptor, can be 

activated. Further reductions of NO3
- 
might result in a net emission of N2O (Hofstra and 

Bouwman, 2005; Li, 2007). If conditions within the soil become anaerobic for several days, 

methanogen cells are activated using H2 as electron acceptor, which results in CH4 as byproduct 

from the microbial respiration (Li, 2007). In addition to H2, methanogens can also use as electron 

acceptors CO2, methanol, methylamines, and acetate; these compounds may result from 

fermentation in anaerobic processes (Paul, 2007). There are two main groups of CH4 producer 

microorganisms: chemolithotrophic and chemoorganotrophic; the first group produces CH4 from 

the reduction of H2 + CO2, while the second group produces CH4 from methanol, methylamines, 

or acetate (Paul, 2007). 

Nitrous oxide is produced biologically by nitrification and denitrification processes 

(Kanako et al., 2006; Lee et al., 2008). The first step in the generation process of N2O in the pen 
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surfaces of a cattle feedlot is mineralization. Once cattle feces and urine are deposited on the pen 

surface, the organic N is mineralized into ammonium ions (NH4
+
) (NRC, 1993b; Taghizadeh-

Toosi et al., 2011), which are then released into the manure pack and stay relatively immobile 

(NRC, 1993b). The second step involves nitrification, if the manure conditions are appropriate. 

Nitrification is the microbial oxidation of NH4
+
 to nitrite (NO2

-
), followed by oxidation into NO3

-
 

when conditions are aerobic with adequate water content (relatively dry), temperature above 9°C, 

and under oxidizing conditions in the manure (Mosier et al., 1998; NRC, 1993b). Nitrates that 

are not absorbed by plants or microorganisms or otherwise immobilized may readily move with 

percolating water and may leach through the soil to groundwater (NRC, 1993b). The third step is 

denitrification. It is a microbial facultative anaerobic respiratory process that reduces oxidized 

forms of N such as NO3
- 
and/or NO2

-
 in response to the oxidation of organic matter wherein NO3

- 
  

and/or NO2
-
 act as electron acceptors (Hofstra and Bouwman, 2005; Mosier et al., 1998; NRC, 

1993b). The final product of denitrification is N2 gas with N2O released as by-product (Mosier et 

al., 1998). Mineralization, nitrification, and denitrification are interactive processes that can 

simultaneously coexist in close proximity in the same setting. 

 2.1.2. Factors affecting GHG emissions 

 2.1.2.1. Chemical and physical factors 

Activation of the microbiological processes described above (i.e., nitrification, 

denitrification, methanogenesis, and respiration) is highly variable in time and space because 

those processes are regulated by interactions of many factors, including soil redox potential, pH, 

C content, NH4
+
 content, water content, temperature, oxidants, and microbial community 

(Bremer, 2006; Hou et al., 2000; Li et al., 2012). Under aerobic conditions, most soil microbial 

cells use O2 as electron acceptor, releasing CO2 into the atmosphere as its main respiratory 

product (Li, 2007). Under anaerobic conditions, organic soils have high denitrification rates due 

to their high organic C content (Hofstra and Bouwman, 2005), which results in emission of N2O. 

Dry soil conditions combined with high soil temperatures result in low N2O emission fluxes 

(Kanako et al., 2002). Limited N2O emission flux in soil with temperatures higher than 35°C has 

been reported (Lee et al., 2008). Nevertheless, as the soil conditions (i.e., water content, 

temperature, and NO3
-
) become favorable for microorganism activity, the rate of denitrification 

increases (Groffman et al., 1993; Kanako et al., 2006; Lee et al., 2008). From a review of 336 
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measurements of denitrification in agricultural soils, Hofstra and Bouwman (2005) reported that 

soil pH was the only soil property with a significant influence on denitrification, with slightly 

alkaline conditions favoring it. They also reported that all other factors related to soil and climate 

conditions did not significantly influence denitrification. A pH around 7 is favorable for N2O and 

CH4 emissions (Hou et al., 2000). 

If conditions within the soil remain anaerobic for several days, soil redox potential 

decreases (Johnson-Beebout et al., 2008; Li, 2007). Delaune and Reddy (2005) reported that in 

soil sediments, anaerobic condition was reached at redox potential below +400 mV. They also 

indicated that the approximate range of denitrification activity was between +400 to +300 mV 

and that the reduction of CO2, which yields CH4 (Paul, 2007; Segers, 1998), was below -200 

mV. Soil redox potential values lower than -200 mV have been reported in flooded fields 

fertilized with manure (Hou et al., 2000). Research on a rice paddy soil (Hou et al., 2000) and in 

a rice paddy greenhouse (Johnson-Beebout et al., 2008) reported that significant N2O emissions 

only occurred at redox potentials above +200 mV and significant CH4 emission occurred below  

-200 mV. Therefore, in flooded agricultural soils, high emissions of both N2O and CH4 do not 

occur simultaneously.  

As described previously, the type of microorganisms that are activated in the soil depends 

on the presence or absence of O2. Water content might be a major factor in controlling the O2 

content in the soil, and therefore, GHG emissions. After water application (i.e., rainfall, water 

sprinkling), the O2 in the top soil surface is displaced by water (NRC, 1993b) and the O2 left in 

the soil might be quickly consumed by the aerobic microorganism present in the soil (Li, 2007). 

Therefore, reduced conditions may dominate temporarily (NRC, 1993b). 

 2.1.2.2. Water application 

Several studies (Kanako et al., 2008; Marinho et al., 2004; Scholes, 1997) reported 

increased N2O emission rates after rainfall events or watering processes in agricultural soils. 

Peaks as much as 22 times larger than normal emission fluxes (Kanako et al., 2006) were 

observed at different times (i.e., from several minutes to several days after the watering event). 

Kanako et al. (2002, 2006) reported that nitrification activity is enhanced by the presence of 

NH4
+
 and that it is activated under low water soil conditions, which produces NO3

-
. They also 

suggested that denitrification is enhanced by the presence of high amount of NO3
-
 and that it is 

activated under high soil water content.  
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Few other studies (Davidson, 1992; Scholes, 1997) reported that N2O emissions began 

and markedly increased within minutes after adding water to dry soil. Nitrifying and denitrifying 

microorganisms appear to be well adapted to surviving several days of dry conditions and 

extreme high and low temperatures simultaneously. They become active within minutes after dry 

soil/manure becomes wet (Davidson, 1992). 

Davidson (1992) and Saggar et al. (2004) reported that when soil water content was 

below field capacity, the N2O emission was inhibited by the addition of acetylene (C2H2), 

suggesting that below field capacity, nitrification accounted for the emission of N2O and that 

denitrification was the dominant process above field capacity. Rates of N2O were up to 5 times 

higher when soil water content was above field capacity, indicating the formation of anaerobic 

sites following watering (Saggar et al., 2004), compared to rates observed below field capacity 

(Davidson, 1992). Mikha et al. (2005) indicated that after watering dry soil, there was a quick 

release of readily degradable organic compounds from dead cells, such as amino acids, NH4
+ 

compounds, and glycerol, which may be utilized by alive microorganisms, increasing their 

activity after a watering event, resulting in a pulse of CO2 emission after watering.  

 2.2. Greenhouse Gas Sampling and Measurement Techniques 

Quantifying GHG emissions from soils and/or pen surfaces is challenging because the 

conditions of open and large surfaces, wide surface heterogeneity and the large temporal and 

spatial variability of the emissions (Marinho et al., 2004; Parkin and Kaspar, 2006). Several 

methods to quantify gas fluxes have been proposed: mass balance, reverse dispersion modeling, 

micrometeorological techniques, and flux chambers. Each of these methods is described briefly 

below. 

 2.2.1. Mass balance 

Some studies have used mass balance to quantify total N emissions from feedlots (Adams 

et al., 2004; Farran et al., 2006); however, this approach does not distinguish among several N 

species. Mass balance requires detailed information on feedlot configuration and operational 

parameters such as pen sizes, stocking densities, animal diet (i.e., N intake, animal live weight, 

dry matter intake, and gross energy), feed refusals, manure characteristics (i.e., total mass, 

chemical and physical composition, and C:N ratio), runoff from the pens, and N retention for the 

animals (Adams et al., 2004; Farran et al., 2006). Several equations are used to compute N 
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intake, N of feed refusal, net protein and net energy, N excreted, N retention, manure N, runoff 

N, and total N lost per animal.  

 2.2.2. Reverse dispersion modeling 

Reverse dispersion modeling is a non-intrusive approach for determining GHG emissions 

from the whole feedlot (McGinn et al., 2009). McGinn and Beauchemin (2012) and McGinn et 

al. (2009) used reverse dispersion modeling to estimate CH4 emissions from a dairy farm and a 

cattle feedlot, respectively. The accuracy of reverse dispersion modeling depends on the model 

and the model input accuracies. In addition, this technique requires in situ weather information as 

well as GHG concentrations upwind and downwind of the source. This approach is not labor 

intensive and emissions can be calculated at short time intervals over a long period of time 

(McGinn et al., 2009).  In addition, measuring from a group of animals negates the need to 

account for between- and within-animal variability when considering treatment differences for 

developing mitigation strategies (McGinn et al., 2009). 

 2.2.3. Micrometeorological techniques 

Micrometeorological techniques are based on flux-gradient relationships, such as 

aerodynamic and Bowen ratio energy balance, eddy transfer theory, such as the eddy covariance 

and relaxed eddy accumulation (REA), or mass balance, such as integrated horizontal flux (IHF), 

and mass difference (McGinn et al., 2007). These techniques employ a combination of 

atmospheric turbulence theory and gas concentration measurements to estimate gas flux to or 

from a surface (McGinn et al., 2007). They are typically implemented by installing 

instrumentation on tower platforms (NRC, 2003). McGinn et al. (2007) explained the basic 

principles of the most common micrometeorological method - the eddy covariance technique, 

also called the eddy correlation or eddy flux. The technique accounts for the vertical transfer of a 

gas by monitoring the vertical movement of parcels of air, known as eddies. The emission rate is 

calculated as the product of the fluctuations in gas concentration and vertical wind speed over a 

short period. The REA, also called conditional sampling, separates the upward and downward 

moving air depending on the sign and magnitude of the vertical wind speed. The REA technique 

samples air at a constant rate to determine the difference in concentration. The standard deviation 

of the vertical wind speed during the sampling period is measured with an ultrasonic 

anemometer. Pattey et al. (2005a) demonstrated the viability of several micrometeorological 
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techniques to provide data on the spatial and temporal resolution to develop scaling-up models 

with regional and global capabilities. The use of several micrometeorological techniques has also 

been reported in McGinn et al. (2007): the aerodynamic technique was used to calculate the 

turbulent diffusivities for NH3 emissions from a manure-holding facility and to estimate CH4 

emissions from grazing dairy cows in a field. The IHF has been used for monitoring CH4 

emissions from manure-holding facilities. The mass difference technique was used to measure 

CH4 emissions from grazing cattle and feedlot cattle. Micrometeorological methods are 

commonly considered the most adequate for measuring emission fluxes from soils and AFOs 

because they do not interfere on the measurement being made and they are generally 

nonintrusive (McGinn et al., 2009; McGinn et al., 2007). However, because they require 

substantial experimental infrastructure, highly qualified personnel, and sophisticated and 

expensive equipment, such as fast-response sensors and recorders in the order of 10–20 Hz 

(McGinn et al., 2007), these methods are expensive. In addition, most micrometeorological 

methods require that the field has to be horizontal and homogeneous (McGinn et al., 2007). 

Additional considerations must also be taken due to air flow distortion caused by the tower and 

the instruments and sensors (NRC, 2003). In general, micrometeorological techniques are 

flexible in that they can be used to estimate gas emission from some point sources and most non-

point sources (McGinn et al., 2007). They can also measure emissions from a single point source 

for 24 hours a day, 365 days a year and for several hectares at the same time (Delft University of 

Technology, 2010).  

The application of micrometeorological techniques requires the measurement of gas 

concentrations in the air, the wind vertical and horizontal speed, as well as meteorological 

conditions. Some common instruments for measuring air concentrations of N2O and CH4 are 

described below. 

1. Photo-acoustic infrared multi-gas analyzer is based on photo-acoustic infrared detection. 

The gas to be measured is irradiated by modulated light of a pre-selected wavelength. 

The gas molecules absorb some of the light energy and convert it into an acoustic signal, 

which is detected by a microphone.This technique can measure virtually any gas that 

absorbs radiation in the infrared spectrum. Gas selectivity is achieved through the use of 

optical filters, which provides means of detecting the gas of interest as well as 

compensation for interfering gases and water (LumaSense, 2012). The main limitation of 
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this technique is the cross interference among gases and water vapor. Water vapor 

absorbs infrared radiation at most wavelengths so that, irrespective of which optical filter 

is used, water vapor will contribute to the total acoustic signal in the analysis cell. To 

compensate for water vapor’s inteference, an optical filter is permanently installed to 

measure water vapor in the gas sample. Any other interfering gas can be compensated for 

in a similar fashion (LumaSense, 2012). This instrument can be equipped with several 

optical filters for measuring up to five gases plus water vapor. Among those gases NH3, 

N2O, CH4, and CO2 are commonly measured.  

2. Open-path tunable diode laser absorption spectroscopy (OP-TDLAS) uses wavelength 

scanning, narrow line-width lasers to determine the path-integrated concentration of a gas 

(Thoma et al., 2005).  A basic OP-TDLAS setup consists of a tunable diode laser source, 

drive electronics, receiving optics, detector, and micro-computer (Boreal Laser, 2012). 

The emission wavelength of the tunable diode laser is tuned over the characteristic 

absorption lines of the specie in the gas in the path of the laser beam. This causes a 

reduction of the measured signal intensity, which can be detected by a photodiode, and 

then used to determine the gas concentration and other properties such as the temperature, 

pressure, velocity, and mass flux of the gas under observation. This particular system 

does not need calibration as it contains a calibration cell with a known proportion of CH4, 

through which the device frequently and automatically calibrates itself within a few 

seconds.  McGinn and Beauchemin (2012) used the open-path CH4 laser to measure the 

upwind CH4 mixing ratio to compute CH4 emissions from a dairy farm. McGinn et al. 

(2009) used a similar device to assess the performance of a dispersion model in 

evaluating the effect of diet on CH4 emissions from a feedlot. The open-path laser has 

also been used to compute NH3 and CH4 from area sources (McGinn et al., 2007; Ro et 

al., 2007). 

3. Open-path Fourier-transform infrared (OP-FTIR) spectroscopy is a technique for the 

identification and quantification of several dozen of atmospheric contaminants in real-

time (Thoma, et al., 2005). A beam of light spanning a range of wavelengths in the near-

IR portion of the electromagnetic spectrum (approximately 2 to 14 µm) is propagated 

from the transmitter. A retro-reflector is positioned to intercept this radiation and redirect 

it back to the receiver portion of the instrument. A spectrum in the optical frequency units 

http://en.wikipedia.org/wiki/Photodiode
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is obtained by performing a Fourier transform on the interferogram. Gases such as CH4 

are identified and quantified via comparison to the system’s internal reference spectra 

library. Any other gaseous compound that absorbs in the IR region is a potential 

candidate for monitoring using this technology. Path-integrated concentrations are 

usually reported in units of ppm-meter (ppm-m). For an open-path FTIR spectrometer, 

the total contaminant is measured within the approximate cylinder defined by the cross-

section of the light beam and the length of the beam itself. This contaminant burden is 

then normalized to a path length of 1 m. The advantage of open-path FTIR spectroscopy 

is that it covers a broad spectral range compared to laser systems. Additional advantages 

are real-time measurement results are available directly in-situ, speed and versatility, data 

quality, and no calibration is required. As disadvantages, OP-FTIR requires significant 

resources and highly trained users to ensure proper deployment, operation, and final data 

production (Thoma et al., 2005). 

4. Cavity Ring-down spectroscopy (CRDS) or cavity ring-down laser absorption 

spectroscopy (CRLAS) is a laser-based absorption spectroscopy technique (Wheeler et 

al., 1998) that has been widely used to study gaseous samples that absorb light at specific 

wavelengths. A typical CRDS setup consists of a laser that is used to illuminate a high-

finesse optical cavity, which in its simplest form consists of two highly reflective concave 

mirrors, typically 99.9% reflectivity over the wavelength range of interest (Wheeler et al., 

1998). When the laser is in resonance with a cavity mode, intensity builds up in the cavity 

due to constructive interference. The laser is then turned off in order to allow the 

measurement of the exponentially decaying light intensity leaking from the cavity. 

During this decay, light is reflected back and forth thousands of times between the 

mirrors giving an effective path length on the order of up to tens of kilometers (Wheeler 

et al., 1998). If a gas that absorbs light is placed in the cavity, the amount of light 

decreases faster. A CRDS measures how long it takes for the light to decay to 1/e of its 

initial intensity, and this "ring-down time" can be used to calculate the concentration of 

the absorbing substance in the gas mixture in the cavity. Advantages of CRDS include 

high sensitivity due to the multi-pass nature of the detection, immune to shot-to-shot 

variations in the laser intensity, and high throughput (Stelmaszczyk et al., 2009; Wheeler 

et al., 1998). Disadvantages include the following: the spectra cannot be acquired quickly 

http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Optical_cavity
http://en.wikipedia.org/wiki/Mirror
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Normal_mode
http://en.wikipedia.org/wiki/Intensity_(physics)
http://en.wikipedia.org/wiki/Constructive_interference
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due to the monochromatic laser source, analytes are limited both by the availability of 

tunable laser light at the appropriate wavelength and also the availability of high 

reflectance mirrors at those wavelengths, and it is more expensive than some alternative 

spectroscopic techniques as consequence of the laser systems and high reflectivity 

mirrors required (Stelmaszczyk et al., 2009). 

 2.2.4. Static flux chambers 

The static flux chamber (SFC) technique has been used extensively to measure rates of 

trace gas exchange between soil surfaces and air, lagoons, and vegetation (NRC, 2003). As 

indicated by Hutchinson and Mosier (1981), Kanako et al. (2008), and Livingston et al. (2006), 

SFC is the technique that has contributed the most to the current knowledge of trace gas 

exchange rates. Additional advantages are the ability to conduct process-level tests of the factors 

that control emissions and the significantly less complex infrastructure required when compared 

to the micrometeorological techniques (NRC, 2003). Hutchinson and Mosier (1981) noted that 

SFC techniques to measure soil gas emissions offer the most useful approach; however, it is 

necessary to implement a good SFC design and to follow an adequate experimental protocol to 

overcome the potential errors that may be associated with this technique. Flux chamber 

techniques are also applicable in measuring gas emission rates from hazardous waste land 

treatment and land fill facilities, contaminated areas with organic volatile compounds due to 

spills and leakage from underground pipelines and storage tanks, and from surface 

impoundments (Kienbusch, 1986). As described by McGinn et al. (2007) and Delft university of 

Technology (2010), by making careful SFC measurements, it is possible to identify the main 

sources of gas emissions from the soil.  

Flux chambers represent an invasive technique because they can influence the micro-

environmental conditions within the chamber (NRC, 2003). In SFC, the gas concentration 

gradient in the headspace tends to increase, but as gas accumulates, the gas concentration 

gradient decreases once equilibrium is reached (Hutchinson and Mosier, 1981). The main 

negative impact of this situation is presented whenever the chamber is deployed on the surface 

and utilized to perform gas sampling for several hours from the same enclosed space. The SFC 

technique overcomes that problem when chambers are utilized for periods less than 40 min 

continuously (Rochette and Eriksen-Hamel, 2008) and chambers are adequately sealed to the soil 

http://en.wikipedia.org/wiki/Monochromatic
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surface (Hutchinson and Livingston, 2001). For continuous gas measurement, forced air 

flow-through chambers are recommended. However, for periodic and instantaneous gas 

sampling, non-flow-through chambers are recommended because lower fluxes can be measured 

and the presence of the vent maintains equal pressure outside and inside the chamber, reducing 

potential measurement errors (Hutchinson and Mosier, 1981).  

The most common method to analyze gas samples obtained from SFCs is the gas 

chromatograph (GC). Using GC does not allow direct gas readings in the field (Predotova et al., 

2011), is time-consuming, and the resulting fluxes are commonly obtained several days after 

field sampling. Another technique that is becoming more common involves use of real-time 

measuring instruments, including the photo-acoustic infrared multi-gas analyzer (PIMA). The 

PIMA is a portable and accurate gas monitor commonly used to measure concentrations in air 

and stack emissions of almost any gas that absorbs infrared radiation (California Analytical 

Instruments, 2012). Using a PIMA in combination with the SFC allows rapid collection of larger 

data sets of several gases simultaneously and their immediate analysis in situ (Predotova et al., 

2011). The portability of PIMA as well as the rapid and ease of measurement, linearity of gas 

concentrations and its capacity of measuring up to five gases simultaneously are significant 

advantages over the GC (Ambus and Robertson, 1998; De Klein et al., 1999; Iqbal et al., 2012; 

Yamulki and Jarvis, 1999). 

More researchers rely on the use of the PIMA technique for the measurement of gases 

both at laboratory and field applications. Cayuela et al. (2010a) evaluated the effect of organic 

animal by-product wastes and commercial mineral fertilizer as soil amendments on N2O and CO2 

emissions from agricultural soils. Cayuela et al. (2010b) evaluated the impact of bioenergy by-

products as soil amendments on GHG emissions. Predotova et al. (2011) assessed the effect of 

several materials used for static flux chamber construction on NH3, CH4, CO2, and N2O 

concentrations. Predotova et al. (2010) determined emissions of NH3, N2O, and CO2 from urban 

gardens. Osada and Fukumoto (2001) assessed emissions of NH3, CH4, and N2O from 

composting livestock wastes. In all of the above works, the PIMAs were set to compensate for 

water vapor and CO2 cross-interferences according to the manufacturer’s instructions.  

Several researchers have compared PIMAs with GCs. Osada and Fukumoto (2001) 

reported that measured values of NH3, CH4, and N2O obtained from the PIMA compared with 

the respective values obtained from conventional methods, such as sulfuric acid trap for NH3 and 
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GC for CH4 and N2O, respectively. They observed a small difference when total emissions from 

composting swine waste were compared. Iqbal et al. (2012) reported that mean fluxes of N2O 

and CO2 measured with the PIMA and GC were less than 10% and 7% different for N2O and 

CO2, respectively. Ambus and Robertson (1998) also reported that N2O and CO2 fluxes based on 

gas concentrations measured with both methods were not significantly different. Akdeniz et al. 

(2009), on the other hand, reported significant differences between N2O concentrations measured 

with the two methods. 

There are two main approaches to compute emission fluxes of GHGs based on SFCs: 

linear and non-linear (diffusion) models (Anthony et al., 1995; Hossler and Bouchard, 2008; 

Rochette and Eriksen-Hamel, 2008). The linear model approach is used to correlate the observed 

SFC headspace gas concentrations and time. It is applicable only for short time intervals, in 

which gas concentration gradient is linear or nearly constant over time (Anthony et al., 1995; 

Hossler and Bouchard, 2008; Rochette and Eriksen-Hamel, 2008). The following equation is 

the linear approach to compute gas fluxes from the soil: 
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), V is volume of air within the chamber (m
3
), A is the 

surface area of soil within the chamber (m
2
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) is the gas concentration gradient with time 
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), and k is a conversion factor for gas concentration from ppm to µg 

m
-3
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This approach offers many advantages but the validity of assuming a linear model 

depends on soil conditions, which might vary from one soil spot to another within the same 

sampling event (Anthony et al., 1995). As such, before adopting a linear regression approach, 

significant attention must be given to potential soil conditions with high emission rates. In such 

cases, sampling times should be short to avoid significant non-linearity (Anthony et al., 1995; 

Ginting et al., 2003; Hutchinson and Mosier, 1981; Rochette and Eriksen-Hamel, 2008). 

As an alternative to the linear model, Hutchinson and Mosier (1981) proposed an 

exponential model based on diffusion theory to correct for the decreasing concentration gradient 

within the SFC headspace. This approach is valid only when the change in gas concentration is 

measured for two consecutive periods of equal time (Anthony et al., 1995), starting from time 0, 

just as soon as the chamber is installed on the surface. The main advantage of this non-linear 
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approach is that the computed fluxes are independent of the sampling time (Hutchinson and 

Mosier, 1981) and are therefore, not affected by soil conditions and the chamber headspace gas 

equilibrium. Its main limitations are that this approach does not account for measurement 

variability, it is highly sensitive to that variability when soil condition produces small fluxes, and 

finally, because only three gas concentrations can be used, its goodness of fit as well as the 

statistical significance of the flux based on those three data points cannot be tested (Anthony et 

al., 1995). 

Ginting et al. (2003) expanded that approach to three general cases for the computation of 

GHG fluxes from soil surfaces. In this approach, three gas samples from the SFC headspace are 

needed; those concentrations are called C0, C15, and C30 for each gas at sampling times of 0, 15, 

and 30 min, respectively. The general equation may be written as:  
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where F is the gas emission rate (mass ha
-1

 d
-1

), k is a unit conversion factor, d is gas density (g 

cm
-3

) at 273 K, T is air temperature within the chamber (K), V is volume of air within the 

chamber (cm
3
), A is area of soil within the chamber (cm

2
),    is gas concentration difference 

(ppm), and ∆t is sampling interval (15 min). Equation 2.2 contains the conversion from volume-

based to mass-based concentration. The only difference between eq. 2.2 and 2.1 is the way in 

which the concentration gradient with time (
  

  
) is calculated. It is based on the following three 

general cases: 

1. Case 1: [∆C1/∆C2] > 1 and C0<C15<C30 (steadily increasing concentrations) or 

C0>C15>C30 (steadily decreasing concentrations):  
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2. Case 2: [∆C1/∆C2] ≤ 1 and C0<C15<C30 (steadily increasing concentrations) or 

C0>C15>C30 (steadily decreasing concentrations): 

(
  

  
) is the average rate of change of concentration between ∆C1 and ∆C2. 

3. Case 3: [∆C1/∆C2] ≤ 1 and C0<C15>C30 or C0>C15<C30 (fluctuating concentrations with 

sampling time): 

(
  

  
) is the average rate of change of concentration between ∆C1 and ∆C3. 
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In these equations ∆C1= (C15-C0), ∆C2= (C30-C15), and ∆C3= (C30-C0). Case 1 is based on 

the diffusion model, considering chamber gas equilibrium with time. Case 2 is based on the 

average of the two slopes between concentrations when there is no gas equilibrium (linear 

model). Case 3 is a particular case wherein concentrations fluctuate with time, indicating that the 

gas flux trend is inconsistent within the selected sampling time (Ginting et al., 2003). This case is 

based on the average of the slopes between the first and second and between the first and third 

gas concentrations, respectively.  

 2.3. Greenhouse Gas Emission from Soils and Animal Feeding Operations 

 2.3.1. Soils fertilized with animal manure 

According to Rochette et al. (2008), agricultural soils amended with manure are known to 

increase N2O emissions because of the enhanced nitrification and denitrification processes. 

However, they also stated that several studies have reported losses of N2O as much as 20% lower 

from manure application in agricultural soils than from synthetic fertilizer N application. 

Fertilization of a silage maize crop with dairy cattle manure and with synthetic fertilizer resulted 

in similar N2O emissions; although, short periods of increased emissions following manure 

application indicated that the enhanced N2O emissions supported by the manure-derived C and N 

substrates are often of short duration (Rochette et al., 2008). In a study of N2O emission fluxes 

from manure-amended soil under maize, Lessard et al. (1996) reported N2O fluxes of 0.494 mg 

m
-2

 h
-1

 compared to 0.070 mg m
-2

 h
-1

 for the same soil without manure application. From a 

review of 846 N2O measurements in agricultural fields, Bouwman et al. (2002) reported that 

organic soils had much higher N2O emissions than mineral soils. Therefore, there is no clear 

consensus regarding the net effect on N2O emission flux in agricultural soils amended with 

animal manure. Although synthetic fertilizers and animal manures might be important sources of 

GHGs, their application into the cropping soils is required to provide the N inputs needed for 

food production (Mosier et al., 1998). 

Among factors affecting N2O emissions from manure-amended soils, Bouwman et al. 

(2002) indicated that soil organic C content, pH, texture, and drainage have significant influence. 

Because soil water content and temperature greatly affect the decomposition rate of soil organic 

matter, these factors also affect the N2O emission flux (Lee et al., 2008). Results from Hofstra 

and Bouwman (2005) suggested that agricultural fields with high N inputs and poor soil drainage 
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show higher denitrification values because the condition of that soil is commonly anaerobic, with 

high organic C content. Ellert and Janzen (2008) reported that soil N2O emissions were 

remarkably variable among treatment replicates and even among duplicate chambers which were 

placed only few meters from each other within the same plots. Emission fluxes of N2O are 

reported as episodic, without seasonal patterns (Ellert and Janzen, 2008; Lessard et al., 1996; 

Scheer et al., 2011), and no significant relationship was found among N2O flux and soil water 

content and temperature in the top 5-cm layer (Ellert and Janzen, 2008). 

In a study of GHG emissions from irrigated cropping soils as influenced by manure and 

synthetic fertilizer applications, emissions of CO2 increased after manure application while 

emissions of CH4 were negligible (Ellert and Janzen, 2008). In contrast, Li (2007) indicated that 

when anaerobic conditions are sustained for several days, the major oxidants will be depleted by 

the microorganisms; methanogens will be activated to use H2 as an electron acceptor, which will 

result in CH4 production. Four years after manure and compost application, Ginting et al. 

(2003) reported that the soil receiving manure or compost had similar residual CO2 emissions 

as the synthetic fertilized soil. They also reported that CH4 fluxes were not significantly different 

from zero under manure and synthetic fertilized soils. Emission fluxes of CO2 varied seasonally, 

with higher rates during the growing season and lower rates during fall and winter (Ellert and 

Janzen, 2008; Ginting et al., 2003).  

 2.3.2. Animal feeding operations 

Whereas N2O emissions from agricultural soils have been extensively studied for several 

years (Parkin and Kaspar, 2006), scientific studies on GHGs from AFOs, including beef cattle 

feedlots, are limited. Mosier et al. (1998) reported that there are three potential sources of N2O in 

AFOs, i.e., animals, dung and urine deposited on the soil surface by grazing animals, and waste 

from confined animals. They also indicated that the total amount of N2O released by cattle 

themselves is likely very small, because the gut is highly anoxic, and those emissions are lower 

than 10 g N2O per kg of N excreted or taken up by the animal.  

In contrast, CH4 emissions from the ruminant digestive tract have been documented as a 

major contributor to atmospheric CH4 (Boadi et al., 2004). Grazing-derived N2O emissions 

ranged from 2 to 98 g N2O per kg of N excreted; the lower values are for well-drained 

unfertilized grassland soils; the larger values are for intensively used and fertilized grasslands 
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(Mosier et al., 1998). Flessa et al. (1996) reported an annual N excretion of 40 kg per head of 

cattle in pasture lands. They also reported that dung and urine patches produced by grazing cattle 

are active emission hot spots for CH4 and N2O, with maximum N2O emissions of 1.3 and 25.7 

mg N2O m
-2

 h
-1

, respectively 10 days after excretion. However, even though fresh dung patches 

showed a maximum CH4 emission of 30 mg m
-2

 h
-1

, this flux rapidly decreased to a net emission 

of approximately zero when patches dried out because aerobic decomposition prevailed (Flessa 

et al., 1996).  

Manure management is considered a key source of anthropogenic N2O. Meat and milk, 

among other animal products, generally contain 5 to 20% of the total N present in the animal 

diet; the remainder is excreted as manure and urine (Mosier et al., 1998), which is deposited on 

the pen surface and available for microbial decomposition resulting in the emission of N2O. In 

AFOs, including cattle feedlots, in which animal intake of N is high, more than half of the intake 

N is excreted as urine (Mosier et al., 1998). In a laboratory experiment, urine application on soil 

samples significantly increased N2O emission rates up to 14 days after application (Klein and 

Logtestijn, 1994).  

Woodbury et al. (2001), in a study of denitrifying enzyme activity in cattle feedlots, 

reported that the pen surface layer is well aerated due to animal traffic, is highly organic, and 

receives large inputs of organic and inorganic N from animal wastes; therefore, pen surfaces are 

favorable for mineralization and nitrification. They also indicated that underneath the pen 

surface, the soil/manure is a compacted anaerobic zone with likely conditions for the 

denitrification of leached NO2
-
 and NO3

-
. Within the pen surface, denitrifying enzyme activity 

showed large seasonal and spatial variation, with high values within a pen, even during the 

winter season, suggesting that there might be large emissions of N as a consequence of local 

enhanced denitrification. Woodbury et al. (2006) reported that emissions of NH3, VOCs, and 

CO2 were highly variable at small distances within pens in a cattle feedlot. Boadi et al. (2004), in 

a study of the diet effect on enteric and manure pack GHG emissions from a feedlot during 

winter season in Canada, reported mean emission rates in manure pack for a high forage:grain 

ratio diet as 0.127, 1.08, and 2170 mg m
-2

 h
-1

 for N2O, CH4, and CO2, respectively.  
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 2.4. Measures to Minimize GHG Emissions 

 2.4.1. Nitrification inhibitors 

Several compounds have been intended as nitrification and urease inhibitors to control 

N2O emissions and NH3, respectively, from agricultural soils and grassland (Malla et al., 2005; 

Menéndez et al., 2006; Weiske et al., 2001a, 2001b). Once the nitrification process is inhibited, 

the result is a decreased amount of NO3
- 
in the soil, which will limit denitrification with a net 

effect of reduced N2O emissions.  Shi et al. (2001) studied several chemical amendments (i.e., 

alum, calcium chloride, brown humate, black humate, and thiophosphoric triamide-NBPT) to 

reduce NH3 emissions from cattle feedlots. Reduced emissions of NH3 from feedlots by as much 

as 98% were reported. NO3
-
 concentrations were reduced about 50% by alum and 95% by 

calcium chloride amendments.  

Most of the N present in cattle urine is in the form of urea, which is commonly 

hydrolyzed to NH4
+
 (Taghizadeh-Toosi et al., 2011). That NH4

+
 might be later converted into 

either NH3 gas by the enzyme urease, which is produced by soil and fecal microorganisms (Shi 

et al., 2001) or NO3
-
 by nitrification. The NO3

-
 fraction likely will result in a net emission of 

N2O, as a consequence of denitrification (Mosier et al., 1998; NRC, 1993b; Taghizadeh-Toosi et 

al., 2011). The reduction of NO3
-
 reported by Shi et al. (2001) suggests that such amendments 

might also reduce N2O emissions from feedlots; however, the costs might be prohibitive (Shi et 

al., 2001). 

 2.4.2. Anaerobic digestion 

An alternative to reduce N losses may be manure management strategies such as pen 

cleaning, which may provide less exposure of manure N to surrounding air and subsequent losses 

(Adams et al., 2004; Monteny et al., 2006). Anaerobic digestion and aerobic composting of 

animal manure have been reported by many researchers (Amon et al., 2006; Novak and Fiorelli, 

2010; Pattey et al., 2005b) as manure management strategies to minimize emission of GHGs 

from AFOs. Anaerobic digestion includes several major steps in the process: (1) manure 

harvesting and transportation from the AFOs to the anaerobic digesters, (2) fermentation process, 

(3) storage of digested slurries, and (4) field application of the digested slurries. If all the manure 

produced in an AFO is collected daily or weekly and placed into anaerobic digesters, these steps 

must be considered and evaluated as potential GHG emission sources: 
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1. Manure harvesting and transportation. When manure is scraped, the top layer is collected. 

This operation exposes the underneath and compacted layer to the air. Considering that 

the top layer is a highly compacted surface, which avoids the oxygen diffusion from the 

air to the subsurface; it is expected that the underneath moist soil/manure pack is 

anaerobic. Therefore, amounts of trapped CH4 and even N2O will be instantaneously 

released to the air for several hours until that exposed surface gets enough oxygen 

diffusion to become aerobic, limiting the production of CH4 as well as the denitrification 

process, switching then to nitrification if the soil conditions are adequate. However, if the 

manure is frequently collected (daily or weekly) and the underneath layer is not 

perturbed, the GHG emissions will be mainly the amount of CH4 released from fresh 

manure.  

2. Fermentation. During fermentation, organic dry matter content, NH3 concentration, pH, 

and viscosity undergo changes that may affect GHG emissions during storage and after 

field application of residues. CH4 emission after fermentation may be reduced because 

most of the degradable organic C is turned into biogas (Clemens et al., 2006). However, 

it is important to prevent uncontrolled losses of CH4 from biogas plants (Clemens et al., 

2006). 

3. Storage of digested slurries. Novak and Fiorelli (2010) indicated that studies on N2O 

emission during storage of digested slurries are inconsistent; while some studies reported 

higher N2O emissions, others reported negligible N2O emissions. In addition, most 

studies reported that CH4 emissions in storage are highest from untreated slurries than 

from the digested slurries (Clemens et al., 2006; Monteny et al., 2006; Novak and 

Fiorelli, 2010).  

4. Field application of the digested slurries. In anaerobic digestion, the readily available 

carbon is incorporated into microbial biomass or lost as CO2 or CH4. There is less 

available carbon in the slurry to trigger denitrification when the slurry is stored or applied 

to land, which results in a reduction of N2O emissions (Amon et al., 2006; Monteny et al., 

2006). Clemens et al. (2006) reported substantial CH4 emissions for a short time after 

application of digested slurry in the field; they also reported that after field application, 

there were no significant differences in GHG emissions between untreated and digested 

cattle slurries. 
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In terms of net total GHG emissions as CO2 equivalent from anaerobic digestion, Amon 

et al. (2006) reported that the net total GHG emissions from untreated dairy cattle slurry 

amounted to 92.4 kg CO2 eq. m
-3

; while net total GHG emissions from anaerobically digested 

dairy cattle slurry amounted to 37.9 kg CO2 eq. m
-3

. This represents a net reduction of 59%. 

More than 90% of these net total GHG emissions originated from CH4 emissions during digested 

slurry storage (Amon et al., 2006). Clemens et al. (2006) also reported that during summer 

storage, total GHG emissions from untreated slurry were nearly twice as high as from digested 

slurry.  

In summary, GHG emissions from anaerobic digestion of cattle manure slurry are mainly 

caused by CH4 emissions during storage and by N2O emissions during and after field application 

of the digested slurries. Anaerobic digestion is a very efficient way to reduce the GHG emissions 

and potentially a ‘win–win’ management of animal manure slurry, since CH4 emitted as biogas 

might be used to produce renewable energy, while N2O emissions following the spreading of the 

digested slurry are also reduced (Clemens et al., 2006; Monteny et al., 2006). 

 2.4.3. Biochar as surface amendment 

Biochar is a carbon-rich by-product from pyrolysis of biomass during bioenergy 

production (Amonette et al., 2010; Sohi et al., 2010; Taghizadeh-Toosi et al., 2011). It is 

recognized for its potential role in C sequestration, ability to reduce GHG emissions, renewable 

energy capability, waste mitigation, and as soil fertilizer amendment (Kookana et al., 2011). 

Several researchers have documented the ability of biochar as soil amendment in controlling 

N2O emissions from soils. Among the studies, in a 60-day incubation experiment, Cayuela et al. 

(2010a) reported that out of 10 bioenergy by-products evaluated, biochars obtained from green 

waste and poultry manure were the most stable residues, with net reduction of N2O emissions 

with respect to the control and also the highest C sequestration potential. Van Zwieten et al. 

(2010) reported that biochars obtained from pyrolysis of green-waste, poultry litter, paper-mill 

waste, and bio-solids showed reductions on N2O emissions from acidic ferrosol soil. Taghizadeh-

Toosi et al. (2011) incorporated biochar into grazing land to evaluate its effectiveness in 

controlling N2O emissions from cattle-urine patches. After the application of 30 t ha
-1

 of biochar, 

N2O emissions from urine patches were reduced by as much as 70%. Scheer et al. (2011) 

assessed the effect of biochar on GHG emissions from an intensive subtropical pasture in 



27 

 

Australia; 30 months after incorporation of feedlot manure biochar into the soil as fertilizer, they 

did not find significant differences in the net flux of N2O, CH4, and CO2, between the biochar-

treated soil and the control treatment. 

 2.5. Summary and Research Needs 

Microorganisms play an important role in the production or consumption of N2O, CH4, 

and CO2. The soil microbiological processes responsible for these GHGs are nitrification, 

denitrification, methanogenesis, and respiration. Those processes are regulated by interactions 

among soil redox potential, pH, C content, temperature, water content, and oxidants. When the 

O2 concentration within the soil decreases, the activity of aerobic microorganisms is depressed, 

but a special group of microorganisms, capable of using NO3
-
 as an electron acceptor, can be 

activated. Further reductions of NO3
- 
might result in a net emission of N2O. If conditions within 

the soil become anaerobic for several days, methanogen cells are activated to use H2 as an 

electron acceptor, which will result in CH4 generation. 

Several methods can be used to quantify gas fluxes from soils: mass balance, reverse 

dispersion modeling, micrometeorological techniques, and flux chambers. Static flux chamber is 

the technique that has contributed the most to the current knowledge of trace gas exchange rates 

between soil surfaces, lagoons, and vegetation. Additional advantages over other methods are the 

ability to conduct process-level tests of the factors that control emissions and the significantly 

less complex infrastructure required compared with micrometeorological methods.  

Nitrification and urease inhibitors have been used to control emissions of N2O and NH3, 

respectively, from agricultural soils; however, they might not be applicable for cattle feedlots. 

An alternative to reduce N losses from AFOs may be manure management strategies such as pen 

cleaning, anaerobic digestion, and aerobic composting of animal manure. These alternatives may 

provide less exposure of manure N to surrounding air and subsequent losses. Biochar is being 

recognized for its potential role in C sequestration, ability to reduce GHG flux levels, renewable 

energy capability, waste mitigation, and as a soil fertilizer amendment.  

The following are key research needs on GHG emissions from AFOs, particularly open 

beef cattle feedlots: 
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1. Quantify and characterize GHG emission fluxes from various locations in beef cattle 

feedlots (i.e., pen surfaces, alleys and waterways, runoff collection ponds, manure storage 

piles). 

2. Develop an understanding of the mechanisms of GHG formation and emission from 

cattle feedlots. 

3. Identify and evaluate measures to minimize GHG emissions from feedlot manure (i.e., 

nitrification inhibition, anaerobic digestion, manure gasification, pen surface 

amendment). 

4. Determine the effects of water application (i.e., rainfall and water sprinkling) on GHG 

emissions from pen surfaces. 

5. Develop and evaluate approaches to monitor GHG emission fluxes from pen surfaces 

and/or whole feedlots. 

6. Develop and evaluate modeling tools for predicting GHG emissions from cattle feedlots. 
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Chapter 3 - Nitrous Oxide Emissions from a Commercial Beef 

Cattle Feedlot in Kansas 

 3.1. Abstract  

Emission of greenhouse gases, including nitrous oxide (N2O), from open beef cattle 

feedlots is becoming an environmental concern; however, research measuring emission rates of 

N2O from open beef cattle feedlots has been limited. This study was conducted to quantify the 

N2O emission rate from pen surfaces in a commercial open-lot beef cattle feedlot in Kansas. 

Static flux chambers with a diameter of 30 cm were used to determine the N2O emission flux 

from several pens as affected by pen surface conditions (i.e., moist/muddy, dry and loose, dry 

and compacted, and flooded) from July 2010 through September 2011. Gas samples were 

collected from the chambers’ headspace at 0, 15, and 30 min using syringes and analyzed with a 

gas chromatograph. From the measured N2O concentrations, N2O emission fluxes were 

calculated. For each pen surface condition, N2O emission flux varied considerably with sampling 

day. Emission flux also varied with pen surface condition, with the moist/muddy surface having 

the largest median emission flux (2.03 mg m
-2

 h
-1

). The dry and compacted, dry and loose, and 

flooded surfaces had median emission fluxes of 0.16, 0.13, and 0.10 mg m
-2

 h
-1

, respectively. 

Further work is needed to investigate techniques to reduce greenhouse gas emissions from beef 

cattle feedlots. 

 3.2. Introduction  

Emission of greenhouse gases (GHGs) such as carbon dioxide (CO2), nitrous oxide 

(N2O), and methane (CH4) are contributing to global warming (Kanako et al., 2002). The 100-

year linear trend (1906 through 2005) of the earth’s climate system shows an increase of 0.74°C 

in air temperature (IPCC, 2007; US EPA, 2010). The combined radiative forcing due to 

increased atmospheric concentrations of CO2, CH4, and N2O is + 2.30 W m
–2

 (IPCC 2007). N2O 

has a global warming potential (GWP) 296 times greater than that of CO2 and an atmospheric 

lifetime of approximately 120 years (IPCC, 2001), yet it is often one of the least known GHGs in 

terms of source material. Animal agriculture and N-enriched soils from fertilization are the 

leading biogenic sources of N2O emissions (Mosier et al., 1998). Total nitrogen (N) retained by 

the animal and animal products (i.e., meat, milk, etc.) is estimated to be only 5–20% of the total 
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N intake for animals, with the rest associated with either excreted feces or urine (Mosier et al., 

1998). Total N excreted in urine alone is estimated to be over 50% of intake N from animal diets 

(Mosier et al., 1998).  

The total inventory of cattle and calves in the United States totaled 100 million head in 

2011 (USDA, 2011), with approximately 34% of those animals concentrated in large open 

feedlots (USDA, 2009). In open beef cattle feedlots, urine deposited on the pen surface 

undergoes both nitrification and subsequent denitrification processes, both of which are 

microbial related and result in N2O emissions (Bremer, 2006; Lee et al., 2008; Saggar et al., 

2004). Urine applied to soil surfaces has been shown to increase N2O emission significantly up 

to 14 days after application; however, activation of these processes is highly variable in time and 

space, because they depend on soil water content, temperature, nitrate (NO3
-
) content, 

ammonium (NH4
+
) content, organic matter content, and microbial community (Bremer, 2006; 

Kanako et al., 2006; Lee et al., 2008).  

Although knowledge on the effects of soil N2O emissions from tillage operations is 

extensive (Parkin and Kaspar, 2006), and although ruminant digestive systems have been 

documented to some extent (Boadi et al., 2004), little information is available on the levels of 

N2O emission from commercial feedlots (Woodbury et al., 2001). This research is expected to 

contribute to the limited data on GHG emissions from beef cattle feedlots. The main purpose of 

this study was to examine emission rates of N2O from commercial beef cattle feedlots surfaces as 

affected by pen surface characteristics and environmental conditions. Feedlot surfaces were 

characterized for temperature, moisture content, total carbon (C), total N, NO3
-
, NH4

+
, and pH; 

static flux chambers (SFCs) were used to sample feedlot pens for N2O gas concentrations. 

Concentrations of N2O were determined using evacuated vials with GC analysis. 

 3.3. Materials and Methods 

 3.3.1. Feedlot description 

This study was conducted in an open beef cattle feedlot in Kansas from June 2010 

through September 2011. The feedlot had a total pen surface area of approximately 59 ha with a 

capacity of 30,000 head. The terrain was level to gently sloping with average slope less than 5%, 

and the feedlot was surrounded by agricultural land. Each pen was scraped two to three times per 

year, and manure was removed at least once per year. During the measurement period, total 
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rainfall in the feedlot area was 352 mm, with the largest total seasonal rainfall of 134 mm in 

summer 2010 and the smallest rainfall amount of 20 mm in the winter 2011. The prevailing wind 

direction in the feedlot was from the south/southwest. Air temperature, total rainfall amount, and 

wind direction were measured with a meteorological station deployed in the field. 

 3.3.2. Sampling and measurement 

Emission fluxes of N2O from the pen surface were measured using SFCs following the 

procedure that has been used for soils (Boadi et al., 2004; Hutchinson and Livingston, 2001; 

Hutchinson and Mosier, 1981; Livingston et al., 2006; Rochette and Eriksen-Hamel, 2008; 

Whalen, 2000). Each SFC had the following components (Fig. 3-1): cylindrical body, metal ring, 

cap, and peripheral accessories (i.e., sampling port, small blower, pressure equalizer, soil/manure 

and air temperature sensors, and data logger). The body was made from 30-cm-diameter PVC 

pipe. The metal ring was made of 18-ga stainless steel and was tightly connected with the 

chamber body. The cap was a low-density polyethylene pipe cap with a diameter of 30 cm 

(Alliance Plastics, Little Rock, AR) and was covered with reflective adhesive tape to minimize 

internal heating by solar radiation (Bremer, 2006; Hutchinson and Mosier, 1981). The sampling 

port was fitted with rubber septum for syringe sampling. The pressure equalizer consisted of a 

vent tube made from aluminum pipe (with a diameter of 0.6 cm and length of 22 cm), following 

the recommendations by Hutchinson and Mosier (1981). A small blower, a single-phase, 6-pole 

brushless direct-current motor with dimensions of 30x30x3 mm (Newark Company, Chicago, 

IL) with a rated volumetric flow rate of 7.5 L min
-1

 was used for internal forced air circulation. 

This small flow rate was designed to prevent internal pen surface disturbance and the subsequent 

effect on emission flux measurement. Soil/manure temperature and air temperature sensors were 

HOBO TMC6-HD sensors (-40 to 100 °C ± 0.25 °C, resolution 0.03 °C) and were connected to a 

data logger (HOBO U12-008, Onset Computer Corp., Bourne, MA). Soil/manure volumetric 

water content was measured with a moisture sensor (model EC-5, Decagon Devices Inc., 

Pullman, WA). Gas samples were analyzed in the laboratory for N2O concentrations using a GC 

(model GC14A, Shimadzu, Kyoto, Japan). It was fitted with a Porapak-Q (80/100 mesh) 

stainless steel column (0.318 cm diameter by 74.5 cm long) and an electron-capture detector 

(ECD). The GC carrier gas was Ar/CH4 (95:5 ratio). The column (oven), injector, and ECD were 

set up at 85, 100, and 320°C respectively. 
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Figure 3-1 Photograph of the static flux chamber showing the major components: (1) chamber 

cap, (2) small blower, (3) pressure equalizer, (4) sampling port, (5) air temperature sensor, (6) 

data logger, (7) soil/manure temperature sensor, and (8) body with the stainless steel ring. 

 

Soil/manure temperature through the first 10 cm below the surface and air temperature in 

the SFC headspace were measured every 60 s during the sampling time. Volumetric soil/manure 

water content (5 cm, 0.3 L measurement volume) was averaged from four measurements before 

capping the chamber. During each field sampling campaign, after the last gas sample was 

collected, a 10-cm soil/manure core was collected from the inside of each SFC for each pen. In 

addition, in one of the pens, a deeper 15-cm core was collected immediately below the first 10-

cm core in each chamber. Those soil/manure cores were used to determine the soil/manure bulk 

density and gravimetric water content. The cores were also analyzed at the Kansas State 

University Soil Testing Laboratory (Manhattan, KS) for pH (soil:water 1:1 method), NH4
+
 and 

NO3
-
 (KCI extraction method), total N (dry combustion method), and total C (salicylic-sulfuric 

acid digestion method).  

 In addition to the required seal between the coupled elements of the SFC, the complete 

chamber must be adequately sealed to the pen surface at the deployment time; hence, the metal 

ring was tightly inserted into the soil/manure layer to limit subsurface gas transport in the 

vertical direction (Hutchinson et al., 2000; Livingston et al., 2006). Rochette and Eriksen-Hamel 

(2008) stated that “leakage or contamination can occur by lateral diffusion of N2O beneath the 

base in response to deformation of the vertical N2O concentration gradient in the soil.” Previous 

studies inserted the chambers 2 to 7.5 cm deep into the soil (Kanako et al., 2002; Ginting et al., 
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2003; Parkin, and Kaspar, 2006; Marinho et al., 2004; Whalen, 2000; Lee et al., 2008; Boadi et 

al., 2004). Based on the procedure suggested for Rochette and Eriksen-Hamel (2008), SFCs in 

this research were inserted 6 cm deep for 30-min deployment time. 

In general, the N2O concentration inside the SFC would increase with time until steady-

state condition was reached. To calculate the emission flux, the change in concentration with 

time (C/t) was determined, and gas samples taken as quickly as possible (Rochette and 

Eriksen-Hamel, 2008). Preliminary tests were performed with a deployment time of 60 min, 

collecting chamber headspace sample each 5 min; results showed relatively constant 

concentration gradient during the first 30 min. As such, for this study, the sampling protocol 

involved sampling at 0, 15, and 30 min after the cap has been put in place. This protocol was 

similar to those developed for soil surfaces. Gas samples were collected with 20-mL disposable 

plastic monoject syringes with detachable 25GX 1 ½-in. needles and injected into previously 

flushed and evacuated 12-mL glass vial. Overpressure was intended to prevent sample 

contamination with atmospheric gases (Marinho et al., 2004) and to have a sample sufficient for 

multiple analyses in the GC. In addition, as a reference of the ambient N2O concentration 

(background), one gas sample was collected at 1-m height just before and after the sampling 

period in each pen.  

From preliminary work, four main pen surface conditions were identified (Fig. 3-2): I - 

moist/muddy, II - dry and loose, III - dry and highly compacted, and IV - flooded. Their 

respective average dry bulk densities were 0.86, 1.06, 1.03, and 0.82 g cm
-3

. The presence and 

locations of the surface conditions changed rapidly with time. During two sampling days in 

March 2011, the relative sizes of the surface conditions were estimated. Mean areas (and 

standard deviations) as percent of total pen area were 14 (10), 47 (27), 24 (2), and 15 (20) % for 

surface conditions I (moist/muddy), II (dry and loose), III (dry and compacted), and IV 

(flooded), respectively.  

During the GHG measurement period (June 2010 through September 2011), there were 

10 field sampling campaigns with a total of 23 sampling days. Three pens were randomly 

selected. In July 2010, paired SFCs were installed covering different surface conditions in a pen. 

Gas samples were taken from the chamber headspaces four times a day, twice in the morning and 

twice in the afternoon. From September through November 2010, and based on presence of the 

different pen surface conditions, SFCs were deployed in three pens, with each available surface 
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condition covered by one SFC. Gas samples were collected twice a day, during the morning and 

afternoon. Analysis of those data indicated that the N2O fluxes were not significantly different 

between the morning and afternoon sampling periods; as such, in succeeding sampling 

campaigns (i.e., February through September 2011), two to four SFCs were deployed in each pen 

and sampled only once a day. 

 

 

Figure 3-2 Photograph of a pen showing the different pen surface conditions (I- moist/muddy, II- 

dry and loose, III- dry and compacted, and IV- flooded). 

 

 3.3.3. Calculation of N2O emission fluxes 

Emission fluxes were computed from the change in N2O concentration with time, as 

described by Anthony et al. (1995), Ginting et al. (2003), and Hutchinson and Mosier (1981): 

  [(
 

 
) (

  

  
)]         (3.1) 

where F is the gas emission rate in (µg m
-2

 h
-1

), V is volume of air within the chamber (m
3
), A is 

the surface area of soil/manure within the chamber (m
2
), ∆C is N2O concentration difference 

(ppm), and ∆t is sampling interval (h). The gas concentration must be converted from volume-

based (ppm) to mass-based concentration (µg m
-3

) using (Cooper and Alley, 2002):  

                  
  

  
     (3.2) 

where Cm is mass concentration (µg m
-3

), Cppm is volume concentration (ppm), MW is the molar 

mass of the gas (g gmol
-1

), P is atmospheric pressure (mm  Hg), T is temperature (K) within the 

enclosed space, and R is the ideal gas constant (62.36 mm Hg L gmol
-1

 K
-1

). The concentration 

gradient with time, ∆C/∆t, was calculated based on three general cases (Ginting et al., 2003): 
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 Case 1 - ∆C1>∆C2 and C0<C15<C30 (steadily increasing concentrations) or C0>C15>C30 

(steadily decreasing concentrations) 
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)]     (3.3) 

 Case 2 - ∆C1≤∆C2 and C0<C15<C30 (steadily increasing concentrations) or C0>C15>C30 

(steadily decreasing concentrations)  
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]      (3.4) 

 Case 3 - ∆C1≤∆C2 and C0<C15>C30 or C0>C15<C30 (fluctuating concentrations with 

sampling time) 
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]     (3.5) 

where ∆C1= (C15-C0); ∆C2= (C30-C15); ∆C3= (C30-C0); C0, C15, and C30 are N2O concentrations 

(ppm) within the SFC at 0, 15, and 30 min, respectively; and ∆t =0.25 h. Case 1 is based on the 

diffusion approach considering SFC N2O saturation with time (Ginting et al., 2003; Anthony et 

al., 1995; Hutchinson and Mosier, 1981). Case 2 is based on the average of the two slopes 

between concentrations when there is no N2O saturation; that is, the gas concentration gradient is 

linear over time (Hossler and Bouchard, 2008; Ginting et al., 2003). Case 3 is based on the 

average of the slopes between the first and second and between the first and third N2O 

concentrations, respectively (Ginting et al., 2003).  

 3.3.4. Statistical analysis 

Emission flux data and soil/manure chemical and physical characteristics were first 

analyzed for normality using the univariate procedure in SAS (Peng, 2004). Normality for each 

individual factor was analyzed based on the complete dataset, then classified by pen, season, and 

pen surface condition. In general, soil/manure characteristics, including water content, 

temperature, pH, total N content, total C content, and chamber air temperature were normally 

distributed. Nitrous oxide emission fluxes, soil/manure NH4
+
 content, and NO3

-
 content, on the 

other hand, were not normally distributed at the 5% level. The N2O emission flux data showed 

positively skewed distribution; as such, log transformation was performed (Bland and Altman, 

1996a, 1996b). The log-transformed data were normally distributed and were then analyzed for 

unequal variances using the MIXED procedure in SAS (SAS, 2008). P-values and confidence 

intervals were adjusted for Bonferroni (Milliken and Johnson, 2009). In addition, the median of 
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the N2O emission fluxes and the confidence interval for the median were reported rather than the 

mean and standard deviation (Bland and Altman, 1996a). Regression analyses between N2O 

emission flux and soil/manure physical and chemical properties for the complete dataset as well 

as segregated analysis by pen surface condition were performed using the stepwise procedure of 

SAS. Predictor factors were assessed for multicolinearity based on the variance inflation factor 

(Kutner et al., 2005). 

 3.4. Results and Discussion 

 3.4.1. Nitrous oxide emission rates 

Measured concentrations of N2O inside the SFCs at sampling times of 0, 15, and 30 min 

and in background air are summarized in Table 3-1. In general, N2O concentrations inside the 

SFCs increased steadily; i.e., C0<C15<C30. Based on the concentration gradients, 41% out of 176 

samples followed case 1 (i.e., ∆C1>∆C2 and C0<C15<C30), 40% followed case 2 (i.e., ∆C1≤∆C2 

and C0<C15<C30), and the remaining 19% followed case 3 (i.e., ∆C1≤∆C2 and C0<C15>C30 or 

C0>C15<C30). 

 

Table 3-1 Measured N2O concentrations inside the static flux chambers and in background air. 
Surface condition Sampling 

time (min) 

Number of 

data points 

N2O concentration (ppm) 

Average Standard 

deviation 

Minimum Maximum 

I- Moist/muddy 

0 39 0.53 0.31 0.29 1.89 

15 39 4.49 8.94 0.40 42.9 

30 39 7.75 17.06 0.41 78.3 

II- Dry and loose 

0 54 0.42 0.13 0.31 0.94 

15 54 0.60 0.28 0.33 1.71 

30 54 0.75 0.45 0.32 2.46 

III- Dry and compacted 

0 51 0.38 0.07 0.26 0.70 

15 51 0.55 0.28 0.32 1.78 

30 51 0.64 0.32 0.34 1.69 

IV- Flooded 

0 32 0.47 0.17 0.32 1.07 

15 32 0.59 0.22 0.37 1.26 

30 32 0.70 0.34 0.41 1.93 

Background air -- 136 0.42 0.11 0.32 0.87 
 

Emission fluxes of N2O for each pen surface condition and season during the study 

period are shown in Figure 3-3a. The fluxes, particularly those for surface condition I 

(moist/muddy), showed considerable temporal variability, as indicated by the large confidence 

intervals. The largest seasonal fluxes were observed in summer 2010 and fall 2010. In summer 
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2010, total rainfall amount and soil/manure average temperature during the study period were the 

largest. In one of the pens, the highest fluxes (15 to 28 mg m
-2

 h
-1

) were observed in July 2010, 

three days after a heavy rainfall event. During that period, air temperatures were greater than 

40°C, resulting in some areas in the pen that were partially dried on the surface and wet 5 to 10 

cm deeper underneath. Those areas, identified as moist/muddy (surface condition I), accounted 

for those largest fluxes during three different sampling days in that pen.  

In contrast, the total rainfall during summer 2011 was less than half the amount during 

summer 2010, which corresponds with the lower N2O fluxes observed during summer 2011. The 

increased emission rate after rainfall events was consistent with general observations for soils 

(Parkin and Kaspar, 2006). Kanako et al. (2006) also reported that N2O emission fluxes after 

heavy rainfall in agricultural soils ranged from 1.73 to 6.42 mg m
-2

 h
-1

. Increased N2O emission 

rates following rainfall events have been reported in both agricultural (Marinho et al., 2004) and 

turfgrass soils (Bremer, 2006); the level of activity also has been associated with seasonality and 

NO3
-
 availability (Groffman et al., 1993). These findings confirm that emissions from cattle 

feedlots are episodic and related to rainfall events and warm temperatures, as noted by Von 

Essen and Auvermann (2005). 

During fall 2010 sampling, N2O fluxes were large in the second studied pen (39 to 42 mg 

m
-2

 h
-1

) in October. The pen included an area that was flooded most of the time, but after two dry 

summer months with a total combined precipitation of only 14 mm, the flooded area became 

moist/muddy (surface condition I), resulting in large N2O emission fluxes. In the same pen, high 

N2O emission fluxes were observed again during the summer 2011 sampling campaign, with 

peak flux of 22 mg m
-2

 h
-1

 in July 2011. 
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Figure 3-3 N2O emission fluxes and related factors as affected by pen surface conditions and 

season: (a) median N2O flux, (b) median nitrate content, (c) median ammonium content, (d) 

median total carbon content, (e) median total nitrogen content, (f) median pH, (g) median 

soil/manure temperature and air temperature by season, and (h) median rainfall amount by 

season. Error bars represent 95% CI. *Rainfall and air temperature were measured continuously; 

all other measurements were at selected times. 
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Median N2O emission fluxes, soil/manure temperature, air temperature, and soil/manure 

water content for the different pen surface conditions are summarized in Table 3-2. Surface 

condition I (moist/muddy) had a median emission flux that was over 20 times greater and 

significantly higher than those for the other surface conditions. Surface conditions II (dry and 

loose), III (dry and compacted), and IV (flooded) did not differ significantly in median emission 

flux. Emission fluxes for surface conditions II, III, and IV were comparable to those of Boadi et 

al. (2004), who reported mean N2O emission rate in manure pack of 0.134 mg-N2O m
-2

 h
-1

. 

 Surface condition I (moist/muddy) could be considered “hot spots” (Woodbury et al., 

2001), which are localized micro-sites with physical and chemical conditions favoring intense 

microbial activity. Surface condition II (dry and loose) was dry on the surface and below it, and 

had lower N2O emission fluxes. In the same way, surface condition III (dry and compacted), 

which represented the pen mound, also produced small N2O emission fluxes. In this case, even if 

the subsurface might be relatively moist, the dry and highly compacted top surface condition 

might have minimized gas diffusion from the wetter subsurface to the surface. Surface condition 

IV (flooded) had the smallest N2O emission flux.  

The large variability among pen surface conditions was consistent with observations for 

agricultural soils. Parkin and Kaspar (2006) reported high emission fluxes related to positional 

differences in chamber placement in the field. The reported spatial variability also may be 

explained by the activation of nitrification and denitrification processes, which are dominant 

factors in soil N2O emission (Bremer, 2006; Lee et al., 2008; Woodbury et al., 2001). The 

activation of these processes varies in time and space due to factors such as temperature, NO3
-
, 

NH4
+
, water, and organic matter content (Bremer, 2006; Kanako et al., 2008, 2006). Woodbury 

et al. (2006) reported that emissions of NH3, VOC, and CO2 were highly variable at small 

distances within pens in a cattle feedlot.   



46 

 

Table 3-2 Data summary for the experimental period. 

Parameter 

Surface condition 

I 

 Moist/muddy 

II   

Dry and loose 

III 

Dry and 

compacted 

IV 

Flooded 

N2O emission flux (mg m
-2

 h
-1

) 

Median 2.03  
a
 0.16 

b
 0.13  

b
 0.10  

b
 

95% CI 1.24 - 3.33 0. 11 - 0.24 0. 09 - 0.20 0. 06 - 0.17 

Minimum/maximum 0.07 / 41.4 0.01 / 1.24 0.0/1.17 0.0/0.66 

Sample size 39 54 51 32 

Chamber air temperature (°C) 

Mean ± standard deviation 26.6±9.2  
a
 29.3±7.8  

a
 28.5±8.6  

a
 26.0±8.6  

a
 

Minimum/maximum 5.3 / 41.5 10.7 / 42.1 5.3 / 40.5 5.2 / 41.5 

Sample size 39 54 51 32 

Soil/manure temperature (°C) 

Mean ± standard deviation 20.9±8.6  
a
 24.9±8.2  

b
 25.0±9.0  

b
 19.5±6.4  

c
 

Minimum/maximum 1.7 /36.5 5.9 /40.5 5.9 / 39.1 8.7 / 35.0 

Sample size 39 54 51 32 

Soil/manure water content  (cm
3
 cm

-3
) 

Mean ± standard deviation 0.52±0.06  
a
 0.26±0.09 

b
 0.19±0.10  

c
 0.60±0.0  

d
 

Minimum/maximum 0.40 /0.58 0. 1 / 0.5 0.01 / 0.39 0.60 / 0.60 

Sample size 39 54 51 32 

Soil/manure NO3
-
 content (ppm) 

Median 1.9  
a
 1.3  

a
 1.6  

a
 1.1  

a
 

95% CI 1.3 - 2.7 1.0 - 1.8 1.2 - 2.2 0.7 - 1.6 

Minimum/maximum 0.4/79.3 0.7/5.3 0.9/15.0 0.5/6.8 

Sample size 20 26 27 12 

Soil/manure NH4
+
 content (ppm) 

Median 359.9  
a
 416.7  

a
 505.4  

a
 275.6  

a
 

95% CI 257.0 - 503.8 317.4 - 546.9 387.0 - 660.1 184.6 - 411.3 

Minimum/maximum 148.4/1332.3 154.5/1043.8 163.9/1407.9 27.6/1001.0 

Sample size 20 26 27 12 

Soil/manure total carbon content (%) 

Mean ± standard deviation 16.7±4.2  
a
 13.6±6.1  

a
 17.1±5.3  

a
 13.6±7.1 

a 
 

Minimum/maximum 9.7/24.4 1.7/23.4 9.1/26.4 5.0/26.8 

Sample size 14 16 19 7 

Soil/manure total nitrogen content (%) 

Mean ± standard deviation 1.5±0.4  
a
 1.2±0.5  

a
 1.5±0.4  

a
 1.1±0.6 

a
 

Minimum/maximum 1.0/2.0 0.2/2.0 0.8/2.1 0.4/2.1 

Sample size 14 16 19 7 

Soil/manure pH 

Mean ± standard deviation 7.0±0.5  
a
 7.0±0.5  

a
 6.8±0.4  

a
 6.9±0.6 

a
 

Minimum/maximum 6.1/7.7 6.0/8.1 6.1/7.7 6.2/8.1 

Sample size 21 26 27 13 
Row means/medians followed by the same letter are not significantly different at 5% level. 
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 3.4.2. Effects of soil/manure properties 

Pen surface conditions differed significantly in water content and temperature (Table 3-

2). Mean values of volumetric water content during the experimental period were 0.52, 0.26, 

0.19, and 0.60 cm
3
cm

-3
 for surface conditions I, II, III, and IV, respectively. Mean soil/manure 

temperatures were 20.9, 24.9, 25.0, and 19.5
o
C for surface conditions I, II, III, and IV, 

respectively. Figures 3-4a and b show mean values of soil water content and temperature by 

season and surface condition. In general, soil/manure temperature significantly decreased as 

soil/manure water content increased (p=0.0025) with R
2
= 0.15 (Fig. 3-4c). For surface conditions 

II and III, soil/manure temperature and water content were significantly correlated (p=0.0002) 

with R
2
=0.13. Because of their large water content, surface conditions I and IV did not show 

significant correlation between soil/manure temperature and water content. Surface conditions I 

and IV observed large changes in soil/manure temperature with small to constant changes in 

soil/manure water content, respectively.  

The largest difference in soil/manure temperature within a pen during the same sampling 

period was 9.6°C; it was observed in the spring 2011 between surface conditions III (34.7°C) and 

IV (25.1°C). A second large soil temperature difference (6.3°C) was observed in another pen 

during the winter 2011, among surface conditions I (2.2°C) and III (8.5°C). Surface condition I, 

due to its higher soil water content (0.53 cm
3
cm

-3
), remained colder than the drier surface 

condition III (0.30 cm
3
cm

-3
). During the winter 2011 sampling campaign, even though soil water 

content of surface condition I was favorable for N2O production, its lower temperature resulted 

in an unusually lower N2O flux compared with surface condition III. During the experimental 

period, differences in soil/manure temperature such as 2 to 5°C were commonly observed within 

the same pen in different surface conditions. 
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Figure 3-4 (a) Soil/manure water content, (b) soil/manure temperature by season and surface 

condition, and (c) soil/manure temperature vs. soil/manure water content. 

 

Kanako et al. (2002) reported that dry soil conditions combined with high soil 

temperatures resulted in low N2O emission fluxes; hence, low soil/manure water content 

combined with soil/manure temperatures greater than 35°C (Lee et al., 2008) may explain in part 

the consistently lower N2O emission fluxes observed for surface conditions II and III. Surface 

condition IV had the lowest soil/manure temperature, and because of its flooded condition, its 

redox potential must have been reduced considerably. Hou et al. (2000) reported that redox 

potential less than -200 mV in flooded fields fertilized with organic manure had significant 

reduction in N2O emission fluxes; this holds true for other soils with low soil redox potential 
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(Johnson-Beebout et al., 2008). Therefore, reduced redox potential may explain in part the 

lowest N2O emission in surface condition IV. In addition, because of its flooded condition, gas 

diffusion through the soil would be lower, corresponding to low N2O emission flux.  

For surface condition I, the higher N2O emission rate is most likely due to the higher 

soil/manure water content and high NO3
-
 concentrations in that surface condition compared with 

the other surface conditions, because rates of denitrification are correlated with high water 

content and NO3
-
 content (Groffman et al., 1993). In contrast, the lower water content and higher 

soil/manure temperature of surface conditions II and III compared with surface condition I 

(Table 3-2) may explain in part their lower N2O emission fluxes, similar to what has been seen in 

soils as they dry (Beare et al., 2009; Maia et al., 2012). In addition, the highly compacted top 

layer of surface condition III retarded water movement and limited oxygen diffusion to the 

underneath moist layer; thereby, reduced redox potential might be present in the deeper layers, as 

suggested by the strong darker coloration (Mayer and Conrad, 1989; Woodbury et al., 2001) and 

smooth/homogeneous texture observed in the subsurface (Fig. 3-5). Therefore, reduced redox 

potential in the subsurface also may explain in part the lower N2O fluxes in surface condition III; 

moreover, because of its highly compacted top surface condition, gas diffusion from the 

subsurface also may be limited, consequently decreasing the N2O emission flux. 

  

Figure 3-5 Darker coloration underneath surface condition III (dry and compacted). 

 

The effects of soil/manure water content and soil/manure temperature on N2O emission 

flux were analyzed. No significant relationship was observed between N2O emission flux and 

soil/manure water content and temperature (Fig. 3-6). This might be a consequence of the large 
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temporal and spatial variability in N2O emission fluxes among the different surface conditions 

within pens and seasons. Nitrous oxide emission flux from surface condition I (moist/muddy) 

decreased as soil/manure water content increased and increased with increments of soil/manure 

temperature, as shown in Figures 3-6a and b. In surface condition I, as water content increased 

over 0.50 cm
3
cm

-3
, the soil/manure became closer to saturation, decreasing the soil air-filled 

porosity, which may reduce gas diffusion through the soil. Lee et al. (2008) reported limited N2O 

emission flux in extremely wet soil conditions. In surface conditions II (dry and loose) and III 

(dry and compacted), N2O emission flux tends to decrease as soil/manure temperature increases. 

This may be explained by their drier conditions wherein increased soil temperatures combined 

with low water content becomes a limiting factor for denitrification activity. Lee et al. (2008) 

also reported limited N2O emission flux in soil with temperatures higher than 35°C. Because of 

the saturated condition of surface IV (flooded), N2O emission flux did not show any relationship 

with soil/manure water content and temperature.  
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Figure 3-6 Nitrous oxide emission flux vs (a) soil/manure water content and (b) soil/manure 

temperature. 

 3.4.3. Relationship between N2O emission flux and soil/manure properties 

Analyses on the effects of soil/manure properties such as NO3
-
, NH4

+
, pH, total C, and 

total N contents on N2O emission flux were performed for each pen surface condition. Figures 3-

3b and c show that NO3
-
 and NH4

+
 contents for all surface conditions were inversely related, as 

might be expected in agricultural soils; however, in this case, those inverse relationships were 

not significant at the 5% level. Unlike agricultural soils, fresh manure and urine are constantly 

added on the pen surface. The urine, once mineralized into NH4
+
, becomes a constant source for 

nitrification; therefore, it is expected that at adequate physical conditions for microorganism 

activity, the rates of nitrification and denitrification in the top 10 cm soil/manure layer might not 

be significantly different. However, when the top 10 cm soil/manure layer was compared with 

the 15-cm layer underneath, the mean/median values of NO3
-
, NH4

+
, total C, and total N were 

significantly larger in the top layer. This result is explained by the fact that the deeper the 

soil/manure layer, the less the availability of O2, which is a limiting factor in nitrification. In 
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addition, O2 limitation is another factor that promotes denitrification, reducing even more the 

NO3
-
 as well as the total C and N contents in the deeper soil/manure layers.  

Figures 3-3a, b, and c show that the lowest NO3
-
 and NH4

+
 content corresponds to 

seasons with the largest N2O fluxes. As the soil/manure conditions (i.e., water content and 

temperature) become favorable for microorganism activity, the rate of denitrification increases 

(Groffman et al., 1993; Kanako et al., 2006; Kanako et al., 2002; Lee et al., 2008). Therefore, 

because the rate of supply of manure and urine to the pen surface is likely constant within 

season, a net result is the reduction of NO3
-
 and NH4

+
 contents and increase in N2O emission 

flux. Hofstra and Bouwman (2005) reported that organic soils have high denitrification rates due 

to their generally anaerobic condition and their high soil organic C content. Additionally, the 

decrease in NH4
+
 content in the summer also might be explained by the high surface 

temperatures, which favor the losses of NH4
+
 to the air in the form of NH3, as suggested by the 

observed inverse relationship between surface temperature and NH4
+
 content. From the analysis 

of the soil/manure chemical conditions, none of the factors (i.e. NO3
-
, NH4

+
, total C, total N, and 

pH) were significantly different between surface conditions within each weather season.  

Because of the large temporal and spatial variability in N2O emission fluxes among the 

different surface conditions, further analysis of fluxes was performed for each pen surface 

condition. Multiple linear regression was performed at 10% level of significance. For surface 

condition I, the log (N2O flux) was directly related to soil/manure water content (sw) and 

inversely related to the log (NH4
+
), with R

2
=0.52:  

    (        )              (  )          (    )    (3.6) 

For surface condition II, the log (N2O flux) was directly related to log (NO3
-
) and inversely 

related to log (NH4
+
) and soil/manure pH, with R

2
=0.44:  

     (        )                  (    )           (    )        (  ) (3.7) 

For surface condition III, log (N2O flux) was directly related to water content and log (NO3
-
) but 

inversely related to soil/manure total C content (tc), with R
2
=0.56: 

    (        )                 (    )        (  )        (  )  (3.8) 

For surface condition IV, log (N2O flux) was significantly inversely related to soil temperature 

(st), with R
2
=0.42: 

       (        )              (  )    (3.9) 
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Table 3-3 compares the measured and predicted median N2O fluxes obtained from 

Equations 3.6 through 3.9. Nitrous oxide fluxes shown in this table represent median N2O fluxes 

per surface condition based on those field-measured fluxes, which included their respective 

soil/manure chemical properties at the sampling time. Because of this, fluxes reported in Table 3-

3 are different from the corresponding fluxes reported in this study. Using Equation 3.6 

overestimated the lower fluxes and underestimated the peaks for surface condition I, with a mean 

prediction error of 69%. Equation 3.7 (surface condition II) also overestimated the individual 

fluxes, with a mean prediction error of 10%. Equations 3.8 and 3.9 resulted in an overall 

underestimation of N2O fluxes, with mean prediction errors of 7 and 19% for the surface 

conditions III and IV, respectively. 

Equations 3.6 through 3.9 should be used only for prediction within the range of the 

experimental data. As previously indicated, those errors of the predicted N2O fluxes are for the 

individual computed fluxes per each chamber deployed on the field; however, when the complete 

dataset was analyzed and the median of predicted fluxes per surface condition were computed, 

the actual N2O median fluxes were not significantly different from the predicted N2O median 

fluxes at α=0.05. Moreover, predicted median fluxes kept the same data distribution and 

significant differences among surface conditions as the actual N2O median fluxes. Therefore, 

based on the complete dataset, there were no significant differences between the actual and 

predicted median N2O emission fluxes for each surface condition, as shown in Table 3-3. 

  



54 

 

Table 3-3 Comparison of actual and predicted N2O fluxes for each surface condition. 

 
N2O median flux (mg m

-2
 h

-1
) 

Actual Predicted 

I -  Moist/muddy  

Median 1.51 
a
 1.93 

a
 

95% CI 0.73 – 3.1 0.9 – 4.0 

Sample size 20 20 

II- Dry and loose  

Median 0.15 
b
 0.15 

b
 

95% CI 0.09 – 0.24 0.09 – 0.24 

Sample size 26 26 

III- Dry and compacted  

Median 0.17 
b
 0.14 

b
 

95% CI 0.12 – 0.23 0.1 – 0.21 

Sample size 19 19 

IV- Flooded  

Median 0.12 
b
 0.12 

b
 

95% CI 0.07 – 0.19 0.07 – 0.19 

Sample size 12 12 
Medians followed by the same letter are not significantly different at 5% level. 

 3.5. Summary and Conclusions 

This study used static flux chambers and gas chromatograph to measure N2O emission 

fluxes from pen surfaces in a large cattle feedlot in Kansas from July 2010 through September 

2011 for a total of 23 sampling days. Emission fluxes varied with pen surface condition, with the 

moist/muddy surface condition having the largest median flux (2.03 mg m
-2

 h
-1

), followed by the 

dry and compacted, dry and loose, and flooded surfaces with median fluxes of 0.16, 0.13, and 

0.10 mg m
-2

h
-1

, respectively. Fluxes varied seasonally as affected by rainfall events and soil 

temperature. Depending on the surface condition, emission fluxes were affected by one or more 

soil/manure properties, such as water content, temperature, total C, pH, NO3
-
, and NH4

+
.  
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Chapter 4 - Laboratory Evaluation of Surface Amendments for 

Minimizing Greenhouse Gas Emissions from Beef Cattle Feedlots 

 4.1. Abstract  

Pen surface amendments for mitigating emissions of greenhouse gases (GHGs), such as 

nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from beef cattle feedlots, were 

evaluated under controlled laboratory conditions. Amendments were organic residues (i.e., 

sorghum straw, prairie grass, woodchip), biochar from those organic residues and from beef 

cattle manure, and activated carbon. Manure samples were collected from several randomly 

selected pens from two beef cattle feedlots in Kansas and used in the experiments, either as dry 

(0.10 g g
-1

 wet basis water content) or moist (0.35 g g
-1

 wet basis). For each amendment, four 

different treatment levels (i.e., amounts of material) were placed on top of manure samples in 

glass containers and analyzed for GHG emission fluxes using a photo-acoustic infrared multi gas 

analyzer. From measured concentrations, emission rates were determined. For the dry manure 

conditions, all amendment materials showed significant reduction of N2O and CO2 emission 

fluxes compared to the control (i.e., no amendment). For the moist manure conditions, none of 

the amendment showed significant effects on GHG emission fluxes during the first 8 days; at 

days 10 and 15 after application, however, the biochar materials performed significantly better 

than the control (i.e., no surface amendment) in reducing N2O and CH4 emission fluxes. No 

significant difference was observed in GHG emission fluxes when the amendments were placed 

on top or mixed within the top surface layer of the manure.  

 4.2. Introduction 

Animal feeding operations (AFOs) emit a variety of air pollutants, including particulate 

matter (PM), ammonia (NH3), odor, and volatile organic compounds (VOCs) that have the 

potential to cause health problems to workers and neighbors. In addition, they are important 

sources of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O) (Mosier et al., 1998), and their contribution to climate change is a growing 

public concern (Stackhouse et al., 2011).  Global increases in anthropogenic CO2 concentrations 

are largely due to fossil fuel use and industrial processes. For CH4, increases have come through 

both industrial and agricultural activities, whereas, increases in N2O are primarily from 
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agricultural activities with soil management as its main source (IPCC, 2007; Raupach and Fraser, 

2011). Ruminant livestock operations are a significant contributor to global CH4 concentration 

(IPCC, 2007; Raupach and Fraser, 2011) but their contribution to global N2O concentration is 

largely unknown since there is little information on the impact of these operations on GHG 

emissions. 

Woodbury et al. (2001) reported that the pen surfaces in cattle feedlots were aerated and 

highly organic and favorable for both mineralizing and nitrification, while the sub-surfaces were 

compacted with anaerobic zones making them susceptible to denitrification. This co-existence of 

both nitrification and denitrification processes in tandem have also been reported to occur with 

manure composting (Ma et al., 2008; Maeda et al., 2010). However, the process of denitrification 

and subsequent N2O emission is highly variable with surface water content controlling surface 

emission flux rates. This observation is supported by Woodbury et al. (2001) who found that 

denitrifying enzyme activity was highly variable both seasonally and spatially. In Chapter 3, it 

was reported that moist/muddy surface conditions (0.52 cm
3
 cm

-3
) had the largest median 

emission flux of 2.03 mg m
-2

 h
-1

 compared to either dry or flooded conditions with median fluxes 

ranging from 0.10 to 0.16 mg m
-2

 h
-1

. The highly variable nature of emissions from feedlot 

surfaces has also been shown to occur for other compounds such as NH3, VOCs, and CO2 

associated with feedlot surfaces (Woodbury et al., 2006).  

Considering that cattle feedlots could potentially contribute significantly to global N2O 

levels, some mitigation strategies must be undertaken to reduce emissions. Nitrification 

inhibitors have been suggested as a possible mitigation strategy and research has shown the 

effectiveness of these compounds (Malla et al., 2005; Menéndez et al., 2006; Parkin and Kaspar, 

2006; Weiske et al., 2001a, 2001b). Nitrification inhibitors are chemicals used to reduce the rate 

ammonium converts to nitrate and they have been shown to be effective in reducing N2O 

emissions from soils. However, costs and animal safety issues make the use of nitrification 

inhibitors less attractive for AFOs. Alternatively, Adams et al. (2004) reported that the 

manipulation of manure carbon:nitrogen (C:N) ratio by direct application of organic matter to the 

pen surfaces, might be an effective mitigation strategy used to decrease N losses. Consequently, 

soil amendments that can change the C:N ratio might be cost effective means of reducing GHG 

emissions from cattle feedlots.  



60 

 

The purpose of this study was to investigate the effectiveness of surface amendments in 

reducing emission of GHGs from feedlot manure. Amendments included organic residues and 

biochar. The effects of manure water content (i.e., dry vs. moist) and the means of application 

(i.e., topical vs. mixed) were also considered. 

 4.3. Materials and Methods 

 4.3.1. Experiments 

A series of laboratory experiments was conducted to evaluate the effectiveness of pen 

surface amendments in reducing emissions of N2O, CH4, and CO2 from feedlot manure. 

Amendments were organic residues (i.e., sorghum straw, prairie grass, woodchip), biochar from 

those organic residues and from beef cattle manure, and activated carbon. Table 4-1 summarizes 

the experimental parameters for the different experiments. Approximately 130 kg of manure was 

collected from several randomly selected pens in two beef cattle feedlots in Kansas. The 

collected manure was completely mixed and air dried for several days until the average 

gravimetric water content (wet mass basis) reached approximately 0.10 g g
-1

. Large clods were 

removed manually from the dry manure and from the amendment materials. The dry manure and 

amendment materials were sieved using an ASTM E-II No 4 (4.75 mm) standard testing sieve. 

For each amendment, four different amounts of material were applied on top of manure samples 

within glass containers and analyzed for GHG emission fluxes using a photo-acoustic infrared 

multi gas analyzer. 

The elemental composition of each organic residue and biochar was measured (Table 4-

2). A sample (30 g) of each material was ground to 0.5 mm using a sample mill (Model 3010-

018, Udy Corp., Fort Collins, CO). Then, the elemental content of each ground sample (2 – 3 mg 

± 0.001 mg) was measured in an Elemental Analyzer (Model 2400, Series II Perkin Elmer, 

Norwalk, CT). Each material was tested in duplicate samples. 
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Table 4-1 Experimental parameters. 

Experiment 

Manure Conditions           

(wet basis) 

Amendment 

Water 

Content    

(g g
-1

) 

Bulk 

Density         

(g cm
-3

) 

Material 

† 

Wet 

Bulk 

Density         

(g cm
-3

) 

Treatment 

Amount  

(mm or g) 

Equivalent Application 

Rates Mass/Surface  

(kg m
-2

) 
1 - Topical application 

of organic residues 

and biochar on moist 

manure + 

0.35 1.1 WC 0.360 0, 1, 3, 5 mm 0,    0.36,   1.08,    1.80 

SS 0.141 0, 1, 3, 5 mm 0,    0.14,    0.42,    0.71 

PG 0.117 0, 1, 3, 5 mm 0,    0.12,    0.35,    0.58 

WCB 0.411 0, 1, 3, 5 mm 0,    0.41,    1.23,    2.05 

SSB 0.159 0, 1, 3, 5 mm 0,    0.16,    0.48,    0.79 

PGB 0.142 0, 1, 3, 5 mm 0,    0.14,    0.43,    0.71 

2 - Topical application 

of biochar and 

activated carbon on 

moist manure + 

0.35 1.1 WCB 0.411 0, 1, 3, 5 mm 0,    0.41,    1.23,    2.05 

SSB 0.159 0, 1, 3, 5 mm 0,    0.16,    0.48,    0.79 

PGB 0.142 0, 1, 3, 5 mm 0,    0.14,    0.43,    0.71 

PMB 1.016 0, 1, 3, 5 mm 0,    1.02,    3.05,    5.08 

LMB 0.530 0, 1, 3, 5 mm 0,    0.53,    1.59,    2.65 

EAC 0.619 0, 1, 3, 5 mm 0,    0.62,    1.86,    3.09 

PAC 0.379 0, 1, 3, 5 mm 0,    0.38,    1.14,    1.89 

3 - Topical application 

of organic residues 

and biochar on dry 

manure ǂ 

0.10 0.48 WC 0.360 0, 1, 3, 5 mm 0,    0.36,    1.08,    1.80 

SS 0.141 0, 1, 3, 5 mm 0,    0.14,    0.42,    0.71 

PG 0.117 0, 1, 3, 5 mm 0,    0.12,    0.35,    0.58 

WCB 0.411 0, 1, 3, 5 mm 0,    0.41,    1.23,    2.05 

SSB 0.159 0, 1, 3, 5 mm 0,    0.16,    0.48,    0.79 

PGB 0.142 0, 1, 3, 5 mm 0,    0.14,    0.43,    0.71 

4 - GHG emission from 

the organic residues 

and biochars ‡ 

- - WC 0.360 0, 10 g 0, 1.5 

SS 0.141 0, 10 g 0, 1.5 

PG 0.117 0, 10 g 0, 1.5 

WCB 0.411 0, 10 g 0, 1.5 

SSB 0.159 0, 10 g 0, 1.5 

PGB 0.142 0, 10 g 0, 1.5 

PMB 1.016 0, 10 g 0, 1.5 

LMB 0.530 0, 10 g 0, 1.5 

EAC 0.619 0, 10 g 0, 1.5 

PAC 0.379 0, 10 g 0, 1.5 

 

5 – Mixing of organic 

residues and biochars 

with manure + 

 

 

0.35 

 

0.60 

 

LMB 

 

0.530 

 

0, 20 g 

 

0, 3.0 

EAC 0.619 0, 20 g 0, 3.0 

6- Adsorption as 

mechanism of GHG 

mitigation * 

- - WCB 0.411 0, 25 g 0, 3.8 

LMB 0.530 0, 60 g 0, 9.0 

EAC 0.619 0, 50 g 0, 7.5 

† WC=Woodchip; SS=Sorghum straw; PG= Prairie grass; WCB= Woodchip biochar; SSB= Sorghum straw biochar; PGB= Prairie 

grass biochar; PMB= Pellet manure biochar; LMB= Loose manure biochar; EAC= Extruded (Pellet) activated carbon; PAC= 

Powder activated carbon. 

+ Control was moist manure with no amendment (0.35 g g-1 gravimetric water content wet basis and 1.1 g cm-3 wet bulk density). 

ǂ  Control was dry manure with no amendment (0.10 g g-1 gravimetric water content wet basis and 0.5 g cm-3 wet bulk density). 

‡ Two controls and 1 treatment per material. Control 1 was indoor air. Control 2 was moist manure with no amendment (0.35 g g-1 

gravimetric water content wet basis and 1.1 g cm-3 wet bulk density).  

* Control was indoor air. 
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Table 4-2 Elemental composition of the materials used as surface amendments. 

Material 
Composition (%) C:N 

Carbon Hydrogen Nitrogen Sulfur  
Woodchip (WC) 46.85 6.13 0.53 1.03 89:1 

Sorghum Straw (SS) 43.11 5.93 0.92 1.04 47:1 

Prairie Grass (PG) 44.19 6.07 0.90 1.10 49:1 

Woodchip Biochar (WCB) 59.82 2.42 0.94 0.40 64:1 

Sorghum Straw Biochar (SSB) 58.38 1.63 1.13 0.28 52:1 

Prairie Grass Biochar (PGB) 63.32 2.51 1.65 0.43 38:1 

Pellet Manure Biochar (PMB) 10.39 0.46 1.05 0.31 10:1 

Loose Manure Biochar (LMB) 14.13 0.51 0.92 0.25 15:1 

Pellet Activated Carbon (EAC) 83.44 0.43 0.83 0.41 101:1 

Powder Activated Carbon (PAC) 86.69 0.53 0.54 0.06 162:1 

 4.3.1.1. Experiment 1 – Topical application of organic residues and biochar on moist manure 

Experiment 1 considered the effects of topical application of organic residues and biochar 

on moist manure. Samples were prepared by mixing 238.3 g of relatively dry manure (0.10 g g
-1

 

water content wet basis) and 91.7 g of water at 22°C in 1-L wide mouth glass containers, which 

were used as static flux chambers (SFCs). The water content of the moist manure sample was 

0.35 g g
-1

 wet basis, which is similar to the average manure water content for pen surfaces 

observed in the field (Chapter 3). The moist manure was then compacted at 1.1 g cm
-3

. 

Containers were kept uncapped in an enclosed space at approximately constant humidity and 

temperature for stabilization purposes during a period of 12 h before treatment application (Fig. 

4-1b). In this experiment, amendments were woodchip, sorghum straw, prairie grass, woodchip 

biochar, sorghum straw biochar, and prairie grass biochar (Fig. 4-1a). Biochars were obtained 

from the gasification process of the organic residues in a laboratory updraft reactor. 
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Figure 4-1 Photographs of the experiment: (a) amendment materials, (b) glass containers with the 

compacted moist manure, within a plastic container with water at the bottom to maintain 

constant manure water content, and (c) measurement set up.   

 

The prepared glass containers were randomly selected and fixed amounts (treatments) of 

the amendment were applied on top of the compacted manure within the containers, as indicated 

in Table 4-1. The containers with just manure but without any amendment served as the control. 

The amendment materials showed large differences in wet bulk density (Table 4-1). Therefore, 

the same mass of those materials would result in large difference in the volumes occupied. 

Moreover, due to the small volume of the containers (1 L) used in the experiment and due to the 

required headspace volume for the gas accumulation and sampling, treatments were designed in 

such a way that each would result in the same headspace gas volume for all amendment materials 

under analysis. Therefore, for each amendment material, treatments consisted of different 

thicknesses of the material applied on top of the manure surface within the containers. There 

were four treatments (i.e., 0 mm or control, 1 mm, 3 mm, and 5 mm), with three replicates each. 

The amount of amendment corresponding to each layer thickness was computed based on the 

actual wet bulk density of each amendment. As a consequence of the different wet bulk densities, 

the same treatment applied to different amendments, required different amounts of mass per 

surface area (kg m
-2

). The smallest treatment (i.e., 0.12 kg m
-2

 or 12 t ha
-1

) was for prairie grass 

and the largest (5.1 kg m
-2

 or 51 t ha
-1

), as shown in Table 4-1, was for pellet manure biochar, 

used in the second experiment. 

The initial gas sampling of each container was performed 45 min after treatment 

application, and before sampling, the headspace of each glass container was flushed with 
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ambient air to ensure that GHG concentrations were at ambient levels (Chiyoka et al., 2011). 

Then, the container being sampled was capped and immediately, air from its headspace was 

circulated through a photo-acoustic infrared multi-gas analyzer or PIMA (Model 1312, AirTech 

Instruments, Ballerup, Denmark) (Cayuela et al., 2010a; Predotova et al., 2011) equipped with 

optical filters for measuring N2O, CH4, CO2, and water vapor. The PIMA was connected by two 

0.5 m long Teflon tubes as inflow and outflow to the glass container, as shown in Figure 4-1c. 

Readings of the headspace concentrations were taken every 50 s from 0 to 10 min. Gas emission 

fluxes were determined for each container. Sampling was conducted once a day for 3 days within 

a 5-day period (i.e., days 1, 3, and 5, with the day of treatment application serving as day 1). 

During this period, containers were kept uncapped in an enclosed space at an approximately 

constant humidity and temperature (Fig. 4-1b). For each sampling day, the laboratory air 

temperature and pressure were recorded. Manure gravimetric water content and temperature 

from each container were also measured during the sampling period. Temperature was measured 

with liquid-in-glass thermometers. Atmospheric pressure was measured using a barometer 

(Princo Southampton, Penn.). 

  4.3.1.2. Experiment 2 – Topical application of biochar and activated carbon on moist manure 

Based on results from Experiment 1, Experiment 2 was conducted to further evaluate the 

effectiveness of biochars in mitigating GHG emission fluxes from moist manure. In this 

experiment, sample preparation, treatments, and the experimental set up, were similar to those 

for Experiment 1. However, sampling was conducted once a day for 6 days within a 15-day 

period (i.e., days 1, 3, 5, 8, 10, and 15). In addition to the biochars in Experiment 1 (i.e., 

woodchip, sorghum straw, and prairie grass), Experiment 2 also included manure biochar and 

activated carbon as amendments. 

 4.3.1.3. Experiment 3 – Topical application of organic residues and biochar on dry manure 

Experiment 3 was conducted to evaluate the effectiveness of several amendment 

materials in mitigating GHG emissions from dry manure. In this experiment, 238.3 g of dry 

manure (0.10 g g
-1

 water content wet basis and 0.55 g cm
-3

 wet bulk density) were placed into 1-

L glass containers; no water was added. Amendments and treatments were the same as those for 

Experiment 1. Control was dry manure without any amendment. Gas sampling was performed in 



65 

 

the same fashion as for Experiments 1 and 2; however, in this case, sampling was conducted 

once a day for 3 days within a 5-day period (i.e., days 1, 3, 5). 

 4.3.1.4. Experiment 4 – GHG emission from the organic residues and biochars 

To assess the potential contribution of the amendments to the GHG emission, 10 g of 

each amendment material were placed in 1-L glass containers. Treatments were the organic 

residues and biochars. Two controls were considered: (i) empty containers containing indoor air 

and (ii) containers containing moist manure with a gravimetric water content of 0.35 g g
-1

 wet 

basis and wet bulk density of 1.1 g cm
-3

. Each treatment had two replications. All amendment 

materials used in the previous experiments were assessed (Fig. 4-1a). Gas samples were 

collected once a day for 3 days within a 5-day period (i.e., days 1, 3, and 5). 

 4.3.1.5. Experiment 5 – Mixing of biochars with manure 

Experiment 5 was conducted to evaluate the effectiveness of biochars in mitigating GHG 

emissions when mixed within the top manure layer. Amendment materials to mitigate GHG 

emission fluxes from pen surfaces in beef cattle feedlots are meant to be placed on the pen 

surfaces; however, with animal activity, some of the amendments are expected to be mixed with 

the top surface layer of the moist and loose areas of the pen, while others will remain on the top 

of the harder and drier pen surfaces.  

Fixed amounts of manure and water, as described in Experiment 1, were mixed in the 1-L 

glass containers within 2 min (0.35 g g
-1

 wet gravimetric water content and 0.66 g cm
-3

 wet bulk 

density). As soon as each manure sample was prepared, the treatment was mixed within the first 

5 cm top layer in the container. Treatments included 20 g of manure biochar and 20 g of 

activated carbon. Control was moist manure without any amendment. There were two 

replications for each treatment. Gas samples were collected once a day for 4 days within a 10-

day period (i.e., days 1, 3, 5, and 10). 

 4.3.1.6. Experiment 6 – Mechanism of GHG emission reduction 

Experiment 6 was conducted to determine if gas adsorption is a possible mechanism in 

mitigating GHG emission from pen surfaces. In this experiment, 500-cc glass containers were 

used as sealed chambers, in which, 150 cc of standard N2O gas (3.5 ppm) were injected into the 

container to evaluate the adsorption capability of the amendments materials. Amendment 
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materials (treatments) were woodchip biochar, loose manure biochar, and activated carbon. They 

were first oven-dried at 125 °C for 12 h to desorb any trace gases. During sampling, 25, 60, and 

50 g of woodchip biochar, manure biochar, and activated carbon, respectively, were placed into 

the containers and capped with a lid prepared for syringe sampling. The control treatment was an 

empty container with indoor air. There were two replications for each treatment. The 

amendments’ masses were computed to allow a headspace volume of 400 cc. Within 2 min after 

treatment preparation, 3-cc air samples were collected from the containers and analyzed for N2O 

concentration using a GC (model GC-14B, Shimadzu Scientific Instrument, Columbia, MD). 

The GC had a Porapak-Q (80/100 mesh) stainless steel column (3.175 x 10-3 m dia. by 1 m 

length), electron-capture detector (ECD), and UHP/zero nitrogen carrier gas. The oven, injector, 

and detector temperatures were 60, 100, and 300°C respectively, as described by Bremer (2006). 

The first sample was considered as the base line N2O concentration for each treatment. As soon 

as the first sample was collected, 100 cc of air were extracted from the containers and then, 150 

cc of N2O 3.5 ppm standard gas were injected into each container. In this manner, a low positive 

pressure was always present in the containers even after the final sampling event. Ten min after 

the N2O standard gas injection, a second 3-cc headspace air sample was collected from each 

container and analyzed in the GC for N2O concentration. Fifty min later, gas sampling was 

repeated. After the first day, headspace gas sampling was then repeated once a day for 4 more 

days within a 6-day period (i.e., days 2, 3, 4, and 6). 

As soon as the last gas samples were taken, the containers were placed into an oven 

(model OV-500B-1, Blue M Electric Co., Blue Island, IL) and heated to reach different 

temperatures (35, 40, 75, and 100°C). Each temperature setting was kept for 2 h and then, 3-cc 

gas samples were taken from the containers and analyzed in the GC for N2O gas concentration. 

Finally, once the final temperature was reached and gas samples collected, the oven was turned 

off, letting the containers to cool down to room temperature (23°C) for 24 h. A final gas sample 

was collected from each container and analyzed in the GC. 

 4.3.2. Computation of gas emission fluxes 

In general, the gas concentration within the container headspace increased linearly with 

time. As such, fluxes were calculated from the slope of the linear regression between gas 
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concentration and time (Whalen, 2000).  From mass balance, the hourly flux (F) from an 

enclosed soil surface area (A) within a space volume (V) is given by: 

      (
 

 
) (

  

  
)      (4.1) 

where       is the change in gas concentration with time within the enclosed space. If the 

relationship between gas concentration and time within the enclosed space is linear, then the 

slope (S) of the linear regression between gas concentration and time can be used to represent 

      (ppm min
-1

). The gas concentration can be converted from ppm to µg m
-3

 using (Cooper 

and Alley, 2002):  

                  
  

  
     (4.2) 

where Cm is mass concentration (µg m
-3

), Cppm is volume concentration (ppm), MW is the molar 

mass of the gas (g gmol
-1

), P is atmospheric pressure (mm Hg), T is temperature (K) within the 

enclosed space, and R is the ideal gas constant (62.36 mm Hg L gmol
-1

 K
-1

). Combining 

equations 4.1 and 4.2, 

                          
 

   
     (4.3) 

where F is the gas emission flux in (mg m
-2 

h
-1

), V is headspace volume of air (cm
3
), A is surface 

area of manure (cm
2
) within the glass container, and S is the slope of the linear regression 

between gas concentration and time within the container (ppm min
-1

). 

In this study, the linear relationship between gas concentration and time within the 

containers was confirmed. For experiments involving moist manure (Experiments 1, 2, and 5), 

the average R
2
 values ± standard deviation were 0.99 ± 0.01, 0.99 ± 0.01, and 0.90 ± 0.20 for 

N2O, CO2, and CH4, respectively. For experiments involving dry manure and amendment only 

(Experiments 3and 4), R
2
 values for the regression lines were lower possibly due to the small 

emission fluxes (mostly 0); average R
2
 values ± standard deviation for N2O, CO2, and CH4 

fluxes were 0.67 ± 0.28, 0.86 ± 0.22, and 0.34 ± 0.24, respectively. 

 4.3.3. Statistical analysis  

In general, the gas emission fluxes depended on their previous day’s emission flux. To 

account for the correlation between emission flux readings, the Autoregressive One, AR(1), 

structure was used on the residuals. Data were analyzed using Proc Glimmix of SAS (SAS, 

2008) using a 5% level of significance. P-values were adjusted by Tukey (Milliken and Johnson, 
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2009). When the Type III test of fixed effects indicated no significant (treatment)x(time) 

interaction, the treatment effects were analyzed and compared to the control. When 

(treatment)x(time) interaction was significant, analysis was done based on sampling days.  

 4.4. Results and Discussion 

 4.4.1. Experiment 1 – Topical application of organic residues and biochar on moist 

manure 

For each treatment and control, emission fluxes of N2O and CH4 increased with sampling 

day; the increase was generally much higher from sampling day 3 to 5 than from sampling day 1 

to 3. The emission fluxes of CO2, on the other hand, did not change much with sampling day. 

Figure 4-2 shows results of GHG emissions from moist manure amended with woodchip and 

woodchip biochar. Statistical analysis showed significant (treatment)x(time) interactions, as 

such, comparison of treatments with control was based on sampling days.   

In general, topical application of the organic residues on the manure sample showed some 

reduction, although not significant, in emission fluxes. However, the biochars at 3 and 5 mm 

treatments significantly reduced GHG emission fluxes at sampling day 5; CO2 emissions were 

also significantly reduced on day 5 even with 1-mm amendment of woodchip biochar (Fig. 4-2). 

A treatment effect was not commonly observed unless emission of GHG was significantly higher 

than initial levels. Therefore, it should be noted that both CH4 and N2O emission flux did not 

significantly increase until after three days of treatment. 
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Figure 4-2 Effects of topical application of woodchips and woodchip biochar on greenhouse gas 

emissions from the moist manure. Within the same day, treatments with the same letter or those 

with no letters are not significantly different at α=5%. 

 

 4.4.2. Experiment 2 – Topical application of biochar and activated carbon on moist 

manure 

Similar to Experiment 1, there were significant (treatment)x(time) interactions. As such, 

treatment effects were analyzed based on sampling days. Topical application of 3 mm and 5 mm 

of loose manure biochar (Fig. 4-3b) and pellet manure biochar (Fig. 4-3c) showed similar effects 

as pellet activated carbon (Fig. 4-3a) in reducing N2O emissions after day 10.  For all sampling 

days, N2O emission flux from the control was larger than those from the 3-mm and 5-mm 

treatments of both manure biochars, as also occurred with the three treatments of pellet activated 

carbon (Fig. 4-3a). However, in the case of manure biochars, those differences were significant 

only on day 15, while activated carbon significantly reduced N2O emissions starting at day 10. 

Powder activated carbon, as expected, showed the same behavior in GHG reduction as pellet 

activated carbon. The 3-mm treatment of loose manure biochar and pellet manure biochar, 

compared to the control, reduced N2O emission fluxes by 63% and 57%, respectively, on day 15. 

The reduction was slightly lower than that from the 3-mm treatment of activated carbon, which 

had a reduction of 73%. Reductions of N2O emissions by activated carbon and manure biochar 
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increased with sampling day (Figs. 4-3a, b, and c). Moreover, with the exception of activated 

carbon, the 1-mm treatment did not result in any significant reduction in N2O emission flux 

possible because of poor surface covering. 

The 3-mm and 5-mm treatments of woodchip biochar also resulted in significant 

reduction of N2O starting at day 10 (Fig. 4-3d). Moreover, 5-mm treatment of prairie grass 

biochar also reduced N2O emissions on day 15 (Fig. 4-3f). No treatment of sorghum straw 

biochar showed any significant effect on N2O emissions (Fig. 4-3e). Among biochar materials, 

the 3-mm treatment of loose manure biochar was best in reducing N2O emissions from the moist 

manure on day 15 (Fig. 4-3b).  

The reduction in N2O emission with biochar-amended manure is not surprising since 

previous researches on biochar have reported significant reductions in N2O emissions from soils 

(Aguilar-Chávez et al., 2012; Cayuela et al., 2010b). Taghizadeh-Toosi (2011) reported 

reductions in N2O fluxes by as much as 70% for pasture soils following the incorporation of 3 kg 

m
-2

 of biochar into the soil. In addition, others have shown that emissions of N2O decreased as 

soil was amended with increased amounts of biochar (Bruun et al., 2011; Rogovska et al., 2011). 

Even in rice paddy soils amended with biochar, there was a significant reduction (51%) in total 

N2O emission, but higher levels of biochar amendments did not necessarily decreased N2O 

emission rates (Zhang et al., 2012; Zhang et al., 2010). 

Effects of application of biochar on CH4 emission fluxes were generally similar to those 

of N2O emission fluxes. Application of 3 mm and 5 mm of manure biochars showed significant 

reductions of CH4 emission fluxes compared to the control on day 15 (Figs. 4-3h and i). All three 

treatments of activated carbon (Fig. 4-3g) and prairie grass biochar (Fig. 4-3l) resulted in 

significant reduction of CH4 emission on day 15. The 1-mm and 3-mm treatments of sorghum 

straw biochar (Fig. 4-3k) also showed significant reduction of CH4 emission on day 15. The 3-

mm treatment of activated carbon showed significant reduction of CH4 emission on day 15 at 

72% compared to the control treatment, while pellet manure biochar, loose manure biochar, 

sorghum straw biochar, and prairie grass biochar had significant reductions of 73%, 63%, 39%, 

and 47%, respectively, on day 15. There was no significant reduction in CH4 emission treated 

with woodchip biochar. Aguilar-Chávez et al. (2012) also did not find any significant effect on 

CH4 emissions due to application of biochar to agricultural soils. 
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Figure 4-3 Effects of topical application of biochar and activated carbon on GHG emissions from 

moist manure. Within a same day, treatments with the same letter or those with no letters are not 

significantly different at α=5%.  
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In the case of CO2, the three treatments of activated carbon (Fig. 4-3m) resulted in 

significant reduction of CO2 emissions during the whole experimental period, with the larger 

reduction obtained from the largest amount of activated carbon placed on the moist manure 

surface, i.e., 5-mm treatment (3.09 kg m
-2

). The 5-mm treatment of woodchip biochar (Fig. 4-3p) 

also significantly reduced CO2 emissions but only at day 15. No other material/treatment 

combination significantly influenced CO2 emissions from moist manure.  

Differences in CO2 emissions from soil amended with several biochars have been 

reported as a result of the differences in the biochars used (Aguilar-Chávez et al. (2012). Cayuela 

et al. (2010b) reported that biochar, used as soil amendment, was the most stable residue with the 

lowest CO2 loss with respect to the total C added. Rogovska et al. (2011) reported that biochar 

sequestered large amounts of highly stable C, but either increased or decreased CO2 emissions 

from the soils, depending on soil characteristics. Scheer et al. (2011) reported no significant 

differences in net fluxes of GHGs between biochar-amended pastures and control plots. In that 

study, the biochar from cattle feedlot manure was applied at a rate of 1 kg m
-2

 to a depth of 10 

cm and the GHG emission was measured 28 months later. 

In summary, during the first 8 days after biochar application on moist manure, there was 

no significant difference in GHG emissions between treatments and control. From day 10, 

however, the amended manure performed significantly better than the untreated moist manure 

(control). Thus, using a biochar as surface amendment appeared to be at least as good and over 

time, better at controlling GHGs than the untreated manure. 

 4.4.3. Experiment 3 – Topical application of organic residues and biochar on dry 

manure 

Figure 4-4 summarizes the emission fluxes from the dry manure samples as affected by 

application of biochars. As expected, emission fluxes from the dry manure samples were 

considerably lower than those from the moist manure samples (Figs. 4-2 and 4-3). Even though 

emission fluxes were small, all amendment materials showed significant reduction in N2O and 

CO2 emissions. The three treatments of prairie grass and sorghum straw significantly reduced 

N2O emissions. For the woodchip biochars, only the 3-mm and 5-mm treatments showed 

significant effect in reducing N2O emissions. This might be a consequence of the poor surface 

area coverage by the 1-mm treatment of woodchip biochar.  
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In the case of CH4, only the three treatments of prairie grass and sorghum straw biochars 

significantly affected CH4 emissions but only during the first day of the experiment. This result 

was possibly a consequence of the low emission flux of CH4 from the substrate due to its low 

water content. It should also be noted that for Experiment 3, the manure samples were not 

compacted due to their dry condition. Therefore, manure conditions within the glass containers 

were likely aerobic, which may significantly reduce denitrification or methanogenesis, the main 

mechanisms of N2O and CH4 formation in the soil, respectively (Hofstra and Bouwman, 2005; 

Li, 2007).  

In the case of CO2, the three treatments of all amendments, with the exception of the 1-

mm treatment of woodchip biochar, significantly reduced CO2 emission flux (Figs. 4-4g, h, and 

i). Under aerobic conditions, most soil microorganism use O2 as an electron acceptor, releasing 

CO2 into the atmosphere (Li, 2007). 

 

Figure 4-4 Effects of topical application of biochars on greenhouse gas emissions from dry 

manure. Within the same day, treatments with the same letter and those with no letters are not 

significantly different at α=5%. 
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 4.4.4. Experiment 4 – GHG emission from the organic residues and biochars 

Table 4-3 and Figure 4-5 summarize the GHG emission fluxes from the amendment 

materials, tested without manure, and the control. Emission fluxes from the organic residues and 

biochars were not significantly different from those for control 1 (indoor air). Also, emission 

fluxes of all three GHGs from the amendment materials were significantly lower than those from 

control 2 (moist manure). As such, there was no significant contribution of GHGs from the 

organic materials and biochars when used as soil amendment. 

 

Table 4-3 Mean emission fluxes of greenhouse gases from the amendment materials. 

Treatment 
Flux (mg m

-2
 h

-1
) 

N2O CH4 CO2 

Control-1 (indoor air) 0.01 a 0.00 a 0.7   a 

Control-2 (moist manure) 6.00 b 2.01 b 5782 b 

Loose manure biochar 0.01 a 0.00 a 11.7 a 

Pellet activated carbon 0.03 a 0.00 a 70.3 a 

Pellet manure biochar 0.01 a 0.00 a 2.8   a 

Powder activated carbon 0.03 a 0.00 a 46.8 a 

Prairie grass 0.02 a 0.00 a 9.0   a 

Prairie grass biochar 0.03 a 0.00 a 43.0 a 

Sorghum straw 0.04 a 0.00 a 69.5 a 

Sorghum straw biochar 0.04 a 0.00 a 82.0 a 

Woodchip 0.02 a 0.00 a 13.8 a 

Woodchip biochar 0.02 a 0.03 a 21.5 a 

Values are mean fluxes for the 5-day experimental period. Mean values followed by the same letter within a specific GHG are 

not significantly different at α=5%. 

 

 

Figure 4-5 Emissions from the amendment materials (no manure) and manure (no amendment): 

(a) nitrous oxide, (b) methane, and (c) carbon dioxide. 
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 4.4.5. Experiment 5 – Mixing of biochars with manure 

Table 4-4 summarizes the GHG emission fluxes from the control and from the manure 

biochar and activated carbon treatments. Both manure biochar and activated carbon significantly 

reduced emission fluxes of N2O (Fig. 4-6a) and CO2 (Fig. 4-6c) compared with the control. 

There was no significant reduction of CH4 emission flux; nevertheless, as in Experiment 2, at 

day10 there was significant reduction in CH4 emission flux for both moist manure treatments 

compared with the control (Fig. 4-6b). The manure biochar showed similar effect as pellet 

activated carbon in reducing N2O emissions (Table 4-4) and their mitigating effect became 

increasingly larger with time (Fig. 4-6a). These results suggest that mixing the biochar with the 

top loose and moist surface layers in the pens would be at least as good as or better than the 

topical application of the amendments in controlling GHGs from pen surfaces. In this 

experiment, the manure samples were not compacted, which could help explain the larger fluxes 

compared with those from Experiments 1 and 2. 

 

Table 4-4 Mean emission fluxes of GHGs under mixed moist manure/amendment condition. 

Treatment 
Flux (mg m

-2
 h

-1
) 

N2O CH4 CO2 

Control (no amendment) 12.05 a 2.05 a 12051 a 

Loose manure biochar mixed with moist manure 8.71 b 1.52 a 9151 b 

Activated carbon mixed with moist manure 8.11 b 1.58 a 6735 c 

Values are mean fluxes for the 10-day experimental period; column means followed by the same letter are not significantly 

different at α=5%. 

 

 

Figure 4-6 Effect of mixed manure/amendment on GHG emissions: (a) nitrous oxide, (b) 

methane, and (c) carbon dioxide. 
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 4.4.6. Experiment 6 – Mechanism of GHG emission reduction 

Figure 4-7 plots the headspace concentration of N2O in the different containers without 

(control) and with amendments. A known amount of N2O (i.e., 150 cc) was injected into the 

containers at 0.17 h. As soon as the N2O was injected, measured concentration of N2O for the 

control (indoor air without any amendment) increased from 0.48 ppm to 1.65 ppm. For 

containers with treatments (i.e., woodchip biochar, manure biochar, and activated carbon), the 

increase in concentrations after injection of the same standard N2O gas was significantly lower. 

No further significant changes in N2O concentrations were observed after the first hour of the 

experiment and no more N2O standard gas was added into the glass containers (Fig. 4-7). The 

significant difference in N2O concentration might be consequence of several mechanisms, 

including adsorption. When biochar materials are added to the soil, they are able to adsorb 

organic molecules through several mechanisms (Joseph et al., 2010). Peng et al. (2009) reported 

activated carbon with high pore volume as a good N2O adsorbent.  

 

Figure 4-7 Nitrous oxide concentrations at the headspace of the containers without (control) and 

with amendments. A known amount of N2O was injected into each container at 0.17 h. 

 

To confirm if adsorption was a possible mechanism of N2O concentration reduction 

within the containers, once the 120-h period of gas sampling at room temperature (23°C) was 

completed, each container still capped was heated to 35°C, 40°C, 75°C, and 100°C.  Then, gas 

samples were drawn from the container headspace at each temperature and immediately analyzed 

for N2O concentration in a GC. Results indicated that at temperatures higher than room 
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temperature (23
o
C), the N2O gas concentration within the containers increased but remained 

relatively constant at constant temperatures (Fig. 4-8). Apparently, the adsorbed N2O at room 

temperature was released at higher temperature, but once that temperature stabilized, there was 

no any additional desorption. 

 

Figure 4-8 Effect of temperature on N2O concentrations inside the containers with various 

amendment materials. 

 

Figure 4-9a shows the concentrations of N2O inside the containers with biochar materials 

when heated. For each material and control, there was no significant change in N2O 

concentrations when samples were heated from 23°C to 40°C. From 40°C to 100°C, however, all 

materials showed a significant N2O desorption. Moreover, N2O concentrations for the control 

treatment did not change much with increasing temperatures. These results confirm that there 

was no chemical reaction between the biochar and the N2O injected into the containers, 

suggesting that the main mechanism responsible for the increase in N2O concentration within the 

containers when heated is desorption. Therefore, adsorption is a possible mechanism responsible 

for the reduction of N2O gas emission from the manure treated with biochar and/or activated 

carbon in the previous experiments. Once the containers were cooled to room temperature, the 

final N2O concentrations decreased to levels comparable to those for the 23°C to 40°C range. 
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Figure 4-9 Nitrous oxide concentrations inside the containers with amendment materials: (a) 

effect of temperature on desorption of N2O after injection of 150 cc of 3.5 ppm N2O standard gas 

and (b) effect of temperature on desorption of N2O from the amendment materials without the 

injection of N2O standard gas. 

  

From the field study presented in Chapter 3, the higher manure temperature in pen 

surfaces in a beef cattle feedlot in Kansas during 15 consecutively months was 40.5°C. The lack 

of significant change in N2O gas concentration within the containers when temperature rose from 

23°C to 40°C is useful because this suggests that the GHGs adsorbed on the amendment 

materials in the feedlot surfaces would not be desorbed even during the higher summer 

temperatures. Moreover, the fact that there was a significant difference in N2O gas concentration 

within the containers between the treatments (materials) and the control (Figs. 4-7 and 4-9a) 

supports the hypothesis that the biochar materials can be used as surface amendments to reduce 

GHG emissions from pen surfaces of beef cattle feedlots, even though significant effect in GHG 

reduction was observed only from days 10 and 15 after biochar application (Fig. 4-3). 

As expected, significant N2O desorption was observed when substrates were heated (Fig. 

4-9a); however, the desorbed gas was as much as twice the expected amount. In the interval from 

40°C to 75°C all materials reached the N2O concentration of the control. This suggests that at 

75°C both biochar and activated carbon have at least released 100% of the N2O previously 

adsorbed. Moreover, when the temperature exceeded 75°C and reached 100°C, the desorbed N2O 

largely exceeded the previously adsorbed gas, suggesting that a mechanism of gas generation 

from the amendment materials is activated at temperatures far larger than field manure 

temperatures. 
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Figure 4-9b represents the N2O gas desorption from the amendment materials themselves 

without any external addition of N2O gas standard into the containers. At 23°C, the N2O 

concentration in all containers with the three amendment materials was significantly lower than 

the one in the control at the same temperature.  This finding suggests that the amendment 

materials adsorbed part of the N2O concentration present in the indoor air within the containers. 

As expected, from 23°C to 40°C there was no significant gas desorption from the materials. 

Once the temperature exceeded 40°C, a large amount of N2O was released from the materials 

themselves. That extra amount of N2O released from the materials cannot be explained from the 

adsorbed N2O at room temperature. In addition, because the amendment materials were oven-

dried at 125 °C for 12 h before the experiment, the possibility that previously adsorbed N2O 

which might be bound to the material and released after 40°C might be also discarded. 

Therefore, because the materials did not react at temperatures between 23°C to 40°C, no gas 

desorption is expected from the biochars in the field since temperature did not commonly reach 

40
o
C (Chapter 3). This fact makes the biochars good candidates as surface amendment materials 

to reduce GHG emissions from pen surfaces in open-lot beef cattle feedlots. 

To verify if the adsorption mechanism was able to account for the N2O mitigation from 

feedlot manure observed in this study, the adsorption capacities of selected amendment materials 

were estimated. From Figure 4-7, N2O concentrations within the containers remained relatively 

constant over time, indicating that the adsorption capacity of the amendment materials might 

have been reached. Based on the average gas concentration, the adsorption capacity of each 

material was computed with respect to the control. The adsorption capacities (< 0.1 µg N2O/g of 

material) were orders of magnitude lower than the reduction in N2O emission observed from 

Experiment 2 (Figs. 4-3a, b, and d). As such, adsorption was not the main mitigation mechanism 

and other mechanisms were likely present.  

In addition to N2O adsorption, other possible mitigation mechanisms include NH4
+
 

immobilization, NO3
-
 adsorption, and NH4

+
 adsorption (Fig. 4-10). Paul (2007) described these 

mechanisms for soils. The first mechanism, NH4
+
 immobilization, is related to the C:N ratios of 

biochars. Table 4-2 shows that with the exception of manure biochar, all other amendments have 

a C:N ratio greater than 20:1, which represents low N content (Barbarick, 2012). When the 

biochars were mixed with the top manure surface layer, the microorganisms’ activity will 

increase due to the addition of extra C although they might not obtain enough extra N from the 
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amendments to synthesize their increasing protein needs and other cellular components 

(Barbarick, 2012; Robertson and Groffman, 2007). The microorganisms will likely immobilize 

part of the available inorganic N (NH4
+
) in the manure surface. Once the NH4

+
 is used to supply 

the microorganisms' need, it will not be plentiful and readily available for nitrification, which 

consequently, will also decrease the subsequent process of denitrification, with a final net effect 

of reduced emissions of N2O (Robertson and Groffman, 2007) from manure surfaces. Adams et 

al. (2004) reported lower N losses in feedlot pens under increased surface manure C:N ratio as 

result of the application of sawdust on pen surfaces during winter/spring months. Other 

researchers reported a linear relationship between the organic matter content and the amount of 

N preserved in the manure (Erickson and Klopfenstein, 2001). Therefore, as manure C content 

increases, it is expected that less N will be volatilized from the manure surfaces. 

 

Figure 4-10 Possible mechanisms for the mitigation of N2O emission from feedlot manure by 

biochar or activated carbon. 

 

The second possible mechanism is NO3
- 
adsorption by the biochar (Fig. 4-10). Several 

studies have reported NO3
- 
adsorption from soil, drinking water, and wastewater, using biochar 

and activated carbon as adsorbents. Kameyama et al. (2012), in a study on the effect of biochar 

(from sugar cane bagasse) on NO3
-
 leaching in soil, reported significant NO3

-
 adsorption on 

biochar obtained at temperatures greater than 700°C. They also reported that basic functional 

groups present in the biochar surface contributed more to NO3
-
 adsorption than physical 

adsorption mechanisms. Yao et al. (2012), in an evaluation of 13 biochar materials on sorption 
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effectiveness of soil nutrients, reported that four biochars obtained at high temperature (600°C) 

significantly adsorbed NO3
-
, with removal rates up to 3.7%. Nunell et al. (2012), in a study of 

NO3
-
 removal from wastewater using activated carbon, reported high NO3

-
 adsorption on wood 

saw dust activated with potassium hydroxide. They reported that a combined effect of carbon 

surface chemistry (high basic functional groups and low acidic groups) and carbon porous 

characteristics were responsible for the NO3
-
 adsorption, with surface chemistry playing a 

prevalent role. Mizuta et al. (2004), in a study of NO3
- 
removal from drinking water using 

bamboo powder charcoal and commercial activated carbon, reported that the bamboo charcoal 

was 15% more effective in adsorbing NO3
-
 than the commercial activated carbon.  

The third possible mechanism is nitrification inhibition through the adsorption of NH4
+
. 

Yao et al. (2012) reported that nine biochars out of 13 significantly adsorbed NH4
+
, with removal 

rates up to 15.7%.  

Based on results from those studies, biochar and activated carbon can adsorb N2O, NO3
-
, 

and NH4
+
. If the adsorbed NH4

+
 from manure is not available for microbial activity, nitrification 

inhibition might result, with a reduction of NO3
-
 generation. If NO3

-
 is also directly adsorbed 

onto the biochar and not available for microbial activity, a net denitrification reduction is 

expected. The net result would be a reduction on N2O emission rates.  

 4.5. Summary and Conclusions 

This research evaluated, under controlled laboratory conditions, the effectiveness of 

application of organic residues, biochar, and activated carbon in controlling emissions of N2O, 

CH4, and CO2 from beef cattle feedlot manure. The following conclusions were drawn: 

1. Topical application of organic residues and biochar on dry manure showed significant 

reduction of N2O and CO2 emission fluxes but did not affect CH4 emission flux. 

2. Topical application of organic residues (i.e. prairie grass, sorghum straw, and woodchip) 

on moist manure did not significantly affect GHG emission fluxes. Topical application of 

biochar also did not show significant reduction of GHG emissions for the first 8 days. 

From day 10 and 15, application of biochar materials significantly reduced N2O and CH4 

emissions compared with the control. Only activated carbon and woodchip biochar 

showed significant effect in reducing CO2 emissions.  
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3. The method of application of biochar (i.e., topical vs. mixed) did not significantly 

influence the effectiveness of the material in reducing GHG emissions. 

4. Adsorption on biochar or activated carbon appeared to be a mechanism for reducing N2O 

emission from feedlot manure; however, other mechanisms (e.g., NH4
+
 immobilization, 

NO3
-
 adsorption, and NH4

+
 adsorption) might be more important.  
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Chapter 5 - Greenhouse Gas Emissions from Feedlot Pen Surfaces: 

Effects of Water Application 

 5.1. Abstract 

The effects of water application (e.g., through rainfall or sprinkler system) on emissions 

of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide 

(CO2), from pen surfaces of open-lot beef cattle feedlots was evaluated under controlled 

laboratory conditions.  Manure samples were collected from several randomly selected pens 

from two beef cattle feedlots in Kansas and were used as simulated pen surfaces. Three 

treatments (i.e., dry and loose, moist and loose, and moist and compacted pen surface conditions) 

were considered, simulating surface conditions in the field after a typical rainfall event or water 

application with a sprinkler system. Manure and water were mixed within glass containers and 

analyzed for GHG emission using a photo-acoustic infrared multi gas analyzer. From measured 

concentrations, emission rates were calculated. GHG emissions from the dry manure were low, 

with mean values of 0.02, 0.00, and 45 mg m
-2

 h
-1

for N2O, CH4, and CO2, respectively. When 

water was applied on the dry manure samples, emission fluxes increased rapidly with peak 

values of 99, 29, and15,443 mg m
-2

 h
-1

 for 
1
for N2O, CH4, and CO2, respectively, just 15 min 

after water application, and then decreased rapidly. A second but lower peak for all three GHGs 

was observed 120 h after water application, with peak value higher for the moist/compacted than 

for the moist/loose manure. 

 5.2. Introduction 

Agricultural operations, including rice cultivation, soil management, and animal feeding 

operations (AFOs), account for large portion of the anthropogenic emissions of CH4 and N2O 

(IPCC, 2007; Raupach and Fraser, 2011). AFOs, in particular, contribute to climate change and 

have become a public environmental concern (Stackhouse et al., 2011).  

 In most soil substrates, microorganisms play an important role in the production or 

consumption of N2O, CH4, and CO2. The microbiological processes that are responsible for 

emissions of these GHGs (i.e., nitrification, denitrification, methanogenesis, and respiration) are 

regulated by interactions among soil redox potential, pH, carbon (C) content, temperature, water 

content, and oxidants (i.e., oxygen (O2), nitrate (NO3
-
), manganese (Mn

4+
), iron (Fe

3+
), sulfate 
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(SO4
2-

), and CO2) (Hou et al., 2000; Li et al., 2012). To survive, grow, and reproduce, most soil 

microorganisms need a source of C, as a basic building block for new cells and they obtain 

energy by catalyzing redox chemical reactions, in which inorganic compounds accept electrons 

(electron acceptors), allowing the complete oxidation of organic substrates (electron donors) 

(NRC, 1993a). To accomplish this process, electrons are transferred from the organic C substrate 

to an electron acceptor. Under aerobic conditions, most soil microbial cells use O2 as an electron 

acceptor, releasing CO2 into the atmosphere (Li, 2007). When oxygen concentration within the 

soil decreases, e.g., as occurs in highly compacted or high water content substrates, as in feedlot 

pen surfaces, the activity of aerobic microorganisms is depressed, but a special group of 

microorganisms, capable of using NO3
-
 as an electron acceptor, can be activated. Further 

reductions of NO3
- 
might result in a net emission of N2O (Hofstra and Bouwman, 2005; Li, 

2007). If conditions within the soil become anaerobic for several days, methanogen cells will be 

activated to use hydrogen as an electron acceptor, resulting in CH4 production (Li, 2007). 

Over the past several decades, agricultural impacts on GHGs emissions have been 

extensively studied (Healy et al., 1996; Parkin and Kaspar, 2006). As reported by Kanako et al. 

(2006), peaks of N2O emissions as much as 22 times larger than normal emission rates were 

obtained several days after rainfall in agricultural soils. Davidson (1992) and Scholes (1997) also 

reported increased emissions of N2O within minutes after adding water to dry agricultural soils. 

Ellert and Janzen (2008), in a study of GHG emissions from irrigated cropping systems as 

influenced by manure and synthetic fertilizer, reported fluxes that were 55 times the mean values 

of the other plots. They also stated that the causes and the extension of those emission hotspots 

remained unknown and that those hotspots might be responsible for a very large proportion of 

the N2O emissions. Mikha et al. (2005) reported increased microbial activity 8 h after watering 

dry soil. De Klein et al. (1999) also reported N2O fluxes increasing from 20 g ha
-1

 day
-1

 before 

irrigation to 740 g ha
-1

 day
-1

 2 h after irrigation and up to 1050 g ha
-1

 day
-1

 24 h after the initial 

irrigation event.  

Despite the extensive GHG emission research for soils, scientific information on GHG 

emissions from cattle feedlots after a rainfall event or water application on pen surfaces is 

limited. Several control strategies for particulate matter (PM) have been suggested for beef cattle 

feedlots. Increasing the pen surface water content through water sprinkling is one the best ways 

to reduce and control dust emissions (Guo et al., 2011; Razote et al., 2006). Because GHGs are 
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produced from the manure due to microbial activity and because this activity might be triggered 

by high water content, the potential for GHG emission while controlling dust through water 

sprinkling must be evaluated. This study evaluated the effects of water application on the 

emission rates of GHGs from feedlot manure. The major objectives of this study were to assess 

under controlled laboratory conditions GHG emissions after water application on dry feedlot 

manure. 

 5.3. Materials and Methods 

Samples of beef cattle feedlot manure (approximately 130 kg) were collected from 

several randomly selected pens in two beef cattle feedlots in Kansas. The samples were 

completely mixed and air dried for several days until the average gravimetric water content was 

approximately 0.10 g g
-1

 wet basis. Large clods were removed by sieving using an ASTM E-II 

No. 4 (4.75 mm) to achieve a more uniform particle size distribution. These sieved samples were 

placed in glass containers and used as simulated pen surfaces, as described below.  

Two sets of experiments were conducted (Table 5-1). The first set (Experiments 1a and 

1b) involved determination of emission fluxes of N2O, CH4, and CO2 from the simulated dry pen 

surfaces after a rainfall event or water application. The second set (Experiments 2a and 2b) was 

designed to investigate the factors that influence the emission of those GHGs from the manure 

after water application. 
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Table 5-1 Experimental parameters. 

Experiments 

Treatments 

(Pen Surface 

Conditions) 

Manure Conditions           

(wet basis) 
Parameters Measured Sampling Time (h) 

 

Water 

Content    

(g g
-1

) 

Bulk 

Density         

(g cm
-3

) 

Gases Manure  

       

1a. Effect of 

water 

application 

on GHG 

emission 

fluxes 

1- Control  

(Dry/loose) 

0.10 0.55 N2O, 

CH4, 

CO2 

Temperature, 

water content 

3.5, 6, 9, 24, 27, 48, 

54, 72, 96, 120, 146, 

172, 220, 314, 362, 

410, 483, 531, 581, 

720 

2- Moist/loose 0.40 0.69 

3- Moist/compacted 0.40 1.1 

       

1b. Effect of 

water 

application 

on GHG 

emission 

fluxes 

1- Control 

(Dry/loose) 

0.10 0.55 N2O, 

CH4, 

CO2 

Temperature, 

water content 

0.08, 0.25, 0.50, 

0.75, 1, 1.5, 2, 3 

2- Moist/loose 0.40 0.69 

3- Moist/compacted 0.40 1.1 

       

2a. Mechanisms 

of GHG 

emissions 

from manure 

after water 

application 

1- Control 

(Dry/loose) 

0.10 0.55 N2O, 

CH4, 

CO2 

Temperature, 

water content, 

NO3
-
, NH4

+
, 

pH 

0, 1, 4, 408, 720 

2- Moist/loose 0.40 0.69 0.17, 0.5, 1, 4, 48, 

120, 312, 408, 480, 

720 

3- Moist/compacted 0.40 1.1 0.17, 1, 4, 48, 120, 

312, 408, 480, 720 

       

2b. Mechanisms 

of GHG 

emissions 

from manure 

after water 

application 

1- Control 

(Dry/loose) 

0.10 0.55 
   

2- Moist/loose 0.40 0.69 -- Temperature Every 5 min for 45 d 

3- Moist/compacted 0.40 1.1    

 

 5.3.1. Experiment 1 – Effects of water application on GHG emission fluxes 

Experiment 1 had two parts (Table 5-1). The first part (Experiment 1a) assessed the long-

term (up to 30 d) trend of emissions of N2O, CH4, and CO2 from simulated pen surfaces after 

water application. In this experiment, 218.8 g of processed dry manure (0.10 g/g water content 

wet basis) were placed into 1-L glass containers, which were used as static flux chambers or 

SFCs (Fig. 5-1a). There were three treatments, including the control, with three replications for 

each treatment (Fig. 5-1c). For the control (i.e., no water application), three containers with the 

dry manure were randomly selected. For the moist/loose manure treatment, three other containers 

were randomly selected and 111.2 g of water at room temperature (22°C) were added and slowly 
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mixed with the dry manure. That amount of water represented 16.7 mm of a simulated short-term 

rainfall or water sprinkling. In the field, during the 2010 spring and summer seasons, rainfall 

events between 8 mm and 22 mm were common (Chapter 3). Final wet bulk density in the 

containers (Table 5-1) was within the range measured under field conditions, as described in 

Chapter 3. For the moist/compacted manure treatment, samples were prepared in the same 

fashion as the moist/loose manure treatment; immediately after mixing the water and the dry 

manure, samples were uniformly compacted until a wet bulk density of 1.1 g cm
-3

 was reached to 

simulate field conditions.  Compaction was performed manually using a cylindrical wooden stick 

and rubber mallet. To standardize the compaction process, samples were compacted until a final 

volume of 300 cc of moist manure within the containers was reached. That final volume was 

computed based on /manure physical conditions. 

 

Figure 5-1 Photographs of the experiment: (a) glass container with moist/loose manure several 

days after water application; (b) sampling set up; (c) treatments with the first horizontal row 

corresponding to the control (no water application), the second to the moist/loose condition, and 

the third to the moist/compacted condition; and (d) temperature measurement.  

 



91 

 

The first gas sampling and measurement for each container was performed 3.5 h after 

water application. Immediately before sampling, the headspace of each container was flushed 

with ambient air (Chiyoka et al., 2011) to ensure that GHG concentrations were at ambient levels 

at the start of measurement. Sampling was performed using a photo-acoustic infrared multigas 

analyzer, PIMA (Model 1312, Innova AirTech Instruments, Ballerup, Denmark), equipped with 

optical filters for measuring N2O, CH4, and CO2, and water vapor, as shown in Figure 5-1b. Gas 

sampling was repeated within a period of 30 d (Table 5-1). During this period, containers were 

kept uncapped within the laboratory. During sampling, the air temperature and pressure were 

measured. Manure temperature from each container was also measured using a thermometer 

(Model 14-983-17A, Fisherbrand, Pittsburgh, PA). Atmospheric pressure was measured using a 

barometer. 

The second part of the experiment (Experiment 1b) assessed the short-term (up to 3 h) 

effects of water application on GHG emissions. The experimental set up, including sample 

preparation, treatments and instrumentation, was the same as that for Experiment 1a. Because of 

the higher sampling frequency in Experiment 1b, there were only two replications for each 

treatment. Gas sampling and measurement was done at 0.08, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, and 

3.0 h after water application (Table 5-1).  

 5.3.2. Experiment 2 – Mechanisms of GHG emissions after water application 

Similar to Experiment 1, Experiment 2 had two parts. The first part (Experiment 2a) 

evaluated the mechanisms of GHG formation in the manure after water application. Treatments 

were the same as in Experiment 1. Twenty four manure samples were prepared following a 

similar process as described for Experiment 1. Five glass containers were used for the control 

(dry/loose manure, no water application). 

GHG concentrations, manure physical and chemical characteristics (i.e., water content, 

temperature, pH, ammonium (NH4
+
), and nitrate content (NO3

-
)) were measured over the 30-d 

experimental period. Each container was sampled once, following the sampling scheme shown in 

Table 5-1. During sampling, the headspace gas concentration in the container was analyzed for 

GHGs in the same manner as described for Experiment 1. After gas concentration measurement, 

a manure core was collected from the sampled container. Those cores were kept frozen and at the 

end of the 30-d experimental period, they were analyzed at the Kansas State University Soil 
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Testing Laboratory for pH, NH4
+
, and NO3

-
, as described in Chapter 3. Each container was 

discarded after core sampling. Manure temperature in each container was measured immediately 

before and after gas sampling using glass thermometers. The air temperature and pressure in the 

laboratory were also measured using the same glass thermometers and the barometer, 

respectively, as in Experiment 1. 

Experiment 2b was conducted in parallel to Experiment 2a. In Experiment 2a, the manure 

temperature was measured only during gas sampling; in Experiment 2b the manure temperature 

was measured continuously every 5 min for 45 d, as indicated in Table 5-1. Treatments were the 

same as described in Experiment 1, with two replicates each (Fig. 5-1d). Two different water 

applications were performed. The first water application was at time 0 h; the second one was at 

day 35 after the first water application. Manure temperature was measured using HOBO TMC6-

HD sensors (-40 to 100°C ± 0.25°C, resolution 0.03°C), connected to a data logger (HOBO U12-

008, Onset Computer Corp., Bourne, MA).  

 5.3.3. Statistical analysis 

The emission flux for each container during sampling was computed using the following 

equation, as described in Chapter 4:  

                          
 

   
     (5.1)  

where F is gas emission flux (mg m
-2

 h
-1

), MW is molar mass of the gas (g gmol
-1

), V is 

headspace volume of air (cm
3
), A is surface area of manure (cm

2
), P is atmospheric pressure (mm 

Hg), T is air temperature (K), and S is slope of the least squares regression line between 

measured gas concentration and time (ppm min
-1

). 

The gas emission flux at a given day was generally correlated with the previous day’s 

emission flux. As such, the Autoregressive One, AR(1), structure was used on the residuals. 

Significant difference between treatments was assessed using Proc Glimmix and paired t-test 

(SAS, 2008) with a 5% level of significance. At gas emission peaks and when (treatment)x(time) 

interactions were present, treatment differences were assessed for each sampling. Significant 

differences between treatments were determined using Tukey p-value adjustments (Milliken and 

Johnson, 2009). Correlation was assessed by Proc Corr of SAS (SAS, 2008). Analysis of 

differences in the processes that generated time-series /manure temperature was assessed by 

White Noise using R Project (R project, 2012). 
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 5.4. Results and Discussion 

 5.4.1. Experiment 1 - Effects of water application on GHG emission fluxes 

Figure 5-2 plots the emission fluxes of N2O, CH4, and CO2 as affected by water 

application. Emission fluxes from the dry/loose manure (control) were negligible. Application of 

water on the manure resulted in significantly larger emission fluxes for all three GHGs. This 

suggests that water application is a trigger factor of GHG emission. Table 5-2 summarizes the 

mean and peak emission fluxes for Experiments 1a and 1b. 

 

Table 5-2 Effects of water application on mean and peak emission values. 

Treatment 

N2O CH4 CO2 

Mean Peak Time† Mean Peak Time† Mean Peak Time† 

(mg m
-2 

h
-1

) (h) (mg m
-2 

h
-1

) (h) (mg m
-2 

h
-1

) (h) 

Dry/loose (Control) 

Moist/loose 

Moist/compacted 

0 to 3 h after water application 

0.0 no peak - 0.0 no peak - 0.7 no peak - 

29.3 99.2 0.25 7.4 28.6 0.25 11678 15443 1.0 

19.3 75.4 0.25 5.1 21.7 0.25 4411 6237 1.5 

Dry/loose (Control) 

Moist/loose 

Moist/compacted 

3.5 to 720 h after water application 

0.02 no peak - 0.00 no peak - 45 247 120 

2.60 6.38 120 0.29 1.33 146 3935 6153 120 

4.33 17.2 410 0.89 4.51 410 3894 5980 220 

† Time in which peaks were observed. 
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Figure 5-2 Effects of water application on emission fluxes of GHGs: a, b, and c, correspond to 

CO2, CH4, and N2O fluxes, respectively during the first 3 h after water application (Experiment 

1b); d, e, and f represent CO2, CH4, and N2O, respectively, from 3.5 to 720 h after water 

application (Experiment 1a). 

 5.4.1.1. Nitrous oxide  

Nitrous oxide emission fluxes for the control (dry/loose condition, no water application) 

were generally low (Figs. 5-2c and f). This is consistent with results from field measurements 

presented in Chapter 3 and with published research for soils. De Klein et al. (1999) reported very 

low N2O fluxes from soils before water application. The N2O emission fluxes from the 

moist/loose and moist/compacted manure samples were significantly larger than those for the 

control. Moreover, N2O emissions from the moist/loose and moist/compacted manure samples 
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were not significantly different; however, they significantly differed in the peak emission values. 

Figure 5-2c shows that for the dry manure (control), the N2O flux remained almost zero during 

the complete experimental period; on the other hand, the N2O fluxes from the moist/loose and 

moist/compacted manure increased to 99 and 74 mg m
-2

h
-1

, respectively, approximately 15 min 

after water application. The first N2O peak from the moist/loose manure was significantly larger 

than that for the moist/compacted manure. The difference in the peak values between 

moist/compacted and moist/loose manure might be due to the larger wet bulk density of the 

moist/compacted manure (Table 5-1), which could have delayed gas diffusion from the 

substrates to their surface/air interface. Therefore, just the top layer of the moist/compacted 

manure was able to quickly diffuse N2O to the headspace, which can also explain its quick and 

large N2O flux decline during the first hour of the experiment. Previous researchers (Davidson, 

1992; Kanako et al., 2008; Kanako et al., 2006; Kanako et al., 2002; Marinho et al., 

2004; Scholes, 1997) have reported increased N2O emission rates after rainfall events or 

artificial watering processes in agricultural soils. Nitrous oxide emission peaks as much as 22 

times larger than normal emission fluxes were obtained at different times after a watering event 

(Kanako et al., 2006). While several studies have reported large emissions of N2O several hours 

or even several days after rainfall events, other studies, including Davidson (1992) for dry 

grassland soil and Scholes (1997) for dry savanna soil, reported that N2O emissions markedly 

increased within minutes after adding water to soil at the end of the dry season. This is 

comparable to results in this study.  

A second N2O emission peak was observed for both the moist/loose and moist/compacted 

manure at 120 and 410 h after water application, respectively. The second N2O peak for the 

moist/loose manure was observed when the N2O flux of the moist/compacted manure and the 

control were not significantly different. The increased N2O emission rate of the moist/compacted 

manure may be a consequence of the accumulated water underneath the surface due to manure 

compaction, which might have resulted in anaerobic conditions within the packed manure, 

triggering the denitrification process and enhancing N2O emissions (Kanako et al., 2006). 

After air-drying of manure, considerable NO3
-
 as result of nitrification is expected to 

remain within the manure; then, when water is applied under these conditions, denitrification 

might lead to a large N2O production (Kanako et al., 2006). Therefore, the remarkably high N2O 

emission rate just within 15 min after water application (Fig. 5-2c) likely resulted as a 
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consequence of a high concentration of NO3
-
 in the dry manure which after the addition of water, 

suddenly triggered the activation of denitrification activity. As suggested by Davidson (1992), 

nitrifying and denitrifying microorganisms appear to be well adapted to surviving for long 

periods of time on dry conditions and extreme high and low temperatures simultaneously; they 

become active within minutes after watering the dry manure. In this experiment, as the 

moist/loose manure dried, conditions likely became more aerobic, reducing the denitrification 

activity, which could help explain the sustained reduction of N2O emission flux one hour after 

watering (Fig. 5-2c), reaching background levels 24 d later (Fig. 5-2f). As described in NRC 

(1993b), in a soil normally dominated by air-filled pore space and oxidizing conditions, the soil 

may become saturated with water during recharge events, and reduced conditions and 

denitrification may dominate temporarily. 

 5.4.1.2. Methane  

Figures 5-2b and e show that CH4 emission fluxes followed the same trend as N2O 

emission fluxes. Emission fluxes from the control (dry/loose manure) were also negligible. 

Emission fluxes from the moist /loose and moist/compacted manure were significantly larger 

than that for the control (dry/loose manure). The first CH4 emission peak from the moist/loose 

manure (28.6 mg m
-2

 h
-1

) was significantly larger than that for the moist/compacted manure (21.7 

mg m
-2

 h
-1

); this might be a consequence of the higher wet bulk density of the moist/compacted 

manure (Table 5-1). A second CH4 emission peak was observed for both moist manure 

treatments at 146 and 410 h after watering, respectively (Fig. 5-2e). The second CH4 emission 

peaks were lower than the first. Also, the CH4 emission peak of the moist/compacted manure 

(4.5 mg m
-2

 h
-1

) was significantly larger than that of the moist/loose manure (1.3 mg m
-2

 h
-1

). 

Results suggest that at 120 h after watering, the moist/compacted manure, which trapped water 

underneath the surface, could have become from its partial and temporary anoxic to completely 

anoxic conditions; the moist/loose manure had recovered its oxidizing conditions at that time. 

This is confirmed for the almost negligible CH4 emission flux from the moist/loose manure while 

the moist/compacted manure showed at the same time, larger CH4 emission flux, as shown in 

Figure 5-2e. 

As described by Li (2007) and Saggar et al. (2004), during a rainfall or watering event, 

the top surface layer might become saturated, and therefore the water would block the diffusion 

of O2 into the soil profile, depleting the O2 left in the soil pore space due to microbial 
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consumption. Because microbial activity in the dry/loose manure is enhanced as manure water 

content increases, this might quickly result in the formation of anaerobic microsites following 

watering, which will result in anoxic conditions in the manure (Saggar et al., 2004). Reduced 

conditions may dominate temporarily in a dry soil after watering (NRC, 1993b); furthermore, in 

the same manner as those temporary anoxic conditions triggered denitrification, they also 

enhanced the activity of methanogenic bacteria, which resulted in large peaks of CH4 fluxes in 

both moist treatments after watering. 

 5.4.1.3. Carbon dioxide  

Carbon dioxide emission fluxes from all treatments and control were significantly 

different (Figs. 5-2a and d). The larger CO2 emission fluxes were observed from the moist/loose 

manure. Similar to N2O and CH4, CO2 emission fluxes from the dry manure were low throughout 

the experimental period. Approximately 581 h after water application, emission fluxes for both 

moist treatments were not significantly different from that for the control. 

In the case of the moist/loose manure, as soon as the pore space was filled out with water, 

conditions could have become temporarily anoxic. Moreover, because of the loose condition, the 

water was exposed to vaporization and also moved deeper into the manure, which could have 

allowed O2 diffusion from the air to the pore spaces, recovering the substrate its aerobic 

conditions, as suggested by the wider CO2 peak compared to the narrower N2O and CH4 peaks. 

Therefore, GHG emission fluxes from the moist/loose manure were likely the result of a 

combination of aerobic and anaerobic conditions present at the same time. Because under aerobic 

conditions, most soil microbial cells use O2 as electron acceptor, releasing CO2 into the 

atmosphere as its main respiratory product (Li, 2007), as expected, the largest CO2 emission flux 

was observed for the moist/loose manure. 

Carbon dioxide emissions from the moist/compacted manure were significantly lower 

than those for the moist/loose manure during the first 3 h after water application (Fig. 5-2a). This 

might be due to the limited gas diffusion and anaerobic conditions. Its compacted condition, in 

addition to the decreased gas diffusion through the manure (which limited O2 diffusion), also 

kept anoxic conditions for longer time as consequence of the trapped water. That sustained 

anoxic condition enhanced denitrification and methanogenesis resulting in large emissions of 

N2O and CH4 but lower emissions of CO2. Figure 5-2d shows the decreasing trend of CO2 

emission flux for the moist/compacted manure 200 h after watering while the emission fluxes of 



98 

 

CH4 (Fig. 5-2e) and N2O (Fig. 5-2f) increased during the same time period. These results support 

the possible presence of mostly anoxic conditions in the moist/compacted manure. 

 5.4.2. Experiment 2 - Mechanisms of GHG emissions after water application 

 5.4.2.1. Nitrous oxide 

The control and moist manure treatments showed significant inverse correlation between 

manure NO3
-
 and NH4

+
 content (Fig. 5-3). Field measurements presented in Chapter 3 indicated 

inverse, but non-significant correlation between manure NO3
-
 and NH4

+
 contents. The non-

significant inverse correlation between NO3
-
 and NH4

+
 from pen surfaces was expected because 

of the likely constant manure NH4
+
 content with time as consequence of the random and 

continuous inputs of fresh cattle urine and manure to the pen surfaces. In this study, there was no 

additional input of nitrogen with time; as such, a sustained decrease of manure NH4
+
 content as 

nitrification increases with time was expected. 

 

Figure 5-3 Relationship between manure ammonium and nitrate contents.  

 

The N2O emission fluxes in Experiment 2 (Fig. 5-4f) followed the same trend as that in 

Experiment 1. In this experiment, the control (dry/loose manure) showed a sustained small 

increase of NH4
+
 (Fig. 5-4d) and a sustained but small decrease of NO3

-
 (Fig. 5-4e) during the 

30-d experimental period. This explains the almost negligible emission of N2O from the control 

in Experiments 1 and 2 (Figs. 5-2c and 5-4f). These results suggest that even though conditions 

were aerobic in the control, due to the low water content, there was limited nitrification as 

nitrifying microorganisms were likely inactive. However, in both moist manure treatments, there 
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was a sudden, although non-significant, decrease of NO3
-
 content after watering (from 0 to 1 h) 

and thereafter, a significant large production of  NO3
-
 and significant large decrease of NH4

+
 

were observed (p< 0.05) (Figs. 5-4e and d). These results suggest that while the manure was dry, 

both NO3
-
 and NH4

+
 were being accumulated because only a small denitrification occurred, but 

as soon as water was added, both nitrifying and denitrifying microorganisms were activated, as 

also suggested by the sudden increase of more than 2°C just within 10 min after watering in both 

moist treatments (Fig. 5-4b). This may have triggered the transformation of NO3
-
 into N2O. 

Mikha et al. (2005) reported increased microbial activity after watering dry soil; however, unlike 

this study, that is reported at 8 h after the watering event. 

In the moist/loose manure, as suggested for the quick decrease of NO3
-
 content after 

water application (Fig. 5-4e), a sudden denitrification might be responsible for the large but 

narrow N2O emission peak within the first 10 min after watering (Figs. 5-2c and 5-4f). That N2O 

emission peak lasted for 30 min, after that, it quickly decreased to a minimum level, which was 

sustained during 120 h after watering. Apparently, up to one hour after watering, the dominant 

process within the moist/loose manure was denitrification. One hour after watering, nitrification 

took place surpassing the rate of denitrification, as suggested by the significant decreasing rate of 

NH4
+
 content (Fig. 5-4d) while NO3

-
 content significantly increased at the same time (Fig. 5-4e). 

At 120 h when the manure water content began to steadily decline (Fig. 5-4a), aerobic conditions 

dominated in the manure, then, a sudden increase of NO3
-
 content (from 42 to 409 ppm) was 

observed. In that same time period, N2O emission flux declined from its previous intermediate 

level (Fig. 5-4f) to the background level. A corresponding decline in the manure temperature was 

also observed (Fig. 5-4b). These results suggest that 120 h after water application, aerobic 

conditions and so nitrification, were predominant within the moist/loose manure and responsible 

for the decreased emission of N2O at that time. 

As shown in Figure 5-4c, the pH in the control was slightly alkaline during the 

experiment. Moreover, in both moist manure treatments, the pH slightly decreased with respect 

to the control as soon as water was mixed with the manure. In the moist/loose manure, an hour 

after watering, the pH increased above that of the control, reaching a maximum of 7.3 at 48 h 

after watering and then, decreased to the background level. In the moist/compacted manure, 

unlike the moist/loose manure, an hour after watering the pH quickly decreased reaching a 

minimum of 6.78 at 48 h and then, increased up to 7.34  at 312 h after watering, staying around 
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that value until the end of the experiment. The lowest pH was observed for the moist/compacted 

manure. At the time of this minimum pH, the largest NH4
+
 content and the lowest NO3

-
 content 

were also observed (Figs. 5-4c, d, and e). In general, pH remained around 7, which is favorable 

for N2O and CH4 production (Hou et al., 2000). 

The moist/compacted manure behaved in a similar manner as the moist/loose manure as 

shown in Figure 5-4. Because rates of denitrification are higher with high water content 

(Groffman et al., 1993) and anoxic conditions, during the first hour after watering, the 

denitrification process was stronger in this treatment than in the moist/loose manure, as 

suggested by Figure 5-4e. Moreover, the narrow peak of N2O emission flux was lower (Fig. 5-4f) 

likely a result of reduced gas diffusion through the highly compacted surface. In this treatment, 

anaerobic conditions remained dominant until 408 h after watering. At 120 h, when the 

compacted manure started drying out, nitrification also took place, as suggested by the large 

increase of NO3
-
 content for moist/compacted manure (Fig. 5-4e). After 120 h, a large N2O 

emission flux began, with a large and broader peak at 408 h. That large N2O emission peak 

might be the result of N2O accumulation underneath the surface during the time that manure 

conditions were anoxic, and then, released once the surface drying process began. The sustained 

(broader) peak can also be explained by the increase of the manure temperature (Fig. 5-4b), 

suggesting that completely anoxic conditions were reached and kept deeper in the manure after 

120 h. Even though the N2O peak showed up at 408 h, 120 h after watering, nitrification was the 

dominant process in the top manure surface with a large conversion of NH4
+
 into NO3

-
, as 

suggested by Figures 5-4d and f, while anoxic conditions still remained at the bottom. 
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Figure 5-4 Relationship among factors affecting GHG emission fluxes during 30 days after water 

application. 
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Several researchers (Klein and Logtestijn, 1994; Lee et al., 2008; Mosier et al., 1998; 

Woodbury et al., 2001) have reported that N2O is produced by the activation of both nitrification 

and denitrification processes. Groffman et al. (1993), Kanako et al. (2006), and Taghizadeh-

Toosi et al. (2011) reported that nitrification activity is activated under low water conditions and 

that it is enhanced by the presence of NH4
+
, which results in the production of NO3

-
 in the soil. 

They also suggested that denitrification is enhanced by the presence of a high amount of NO3
-
 

and that it is activated under high water content. Davidson (1992) and Saggar et al. (2004) 

reported that below field water capacity, nitrification accounted for the emission of N2O and 

above field capacity denitrification is the dominant process. The formation of anaerobic sites 

following watering was responsible for N2O emission rates up to 5 times larger when soil water 

content was above field capacity compared to rates observed below water field capacity (Saggar 

et al., 2004). This suggests that well-drained pens in cattle feedlots will emit lower amounts of 

N2O compared to poorly drained pens because the main driving agent in the dry pen is 

nitrification. 

In general, as shown in Table 5-3, the N2O emission flux from the moist/loose manure 

was positively correlated with manure factors such as water content, temperature, and NH4
+
 

content, and inversely correlated with pH and NO3
-
 content. Ammonium was directly correlated 

with manure water content and temperature, but inversely correlated with NO3
-
 content. Nitrate 

content was inversely correlated with manure temperature. In the case of the moist/compacted 

manure, N2O emission flux was significantly correlated only with manure temperature. 

Ammonium was positively correlated with manure water content, but inversely correlated with 

pH and NO3
-
 content. Nitrate content showed significant monotonic relationship with manure 

water content (inverse) and pH content (direct), as indicated in Table 5-3. Moreover, N2O, CH4, 

and CO2 emission fluxes were significantly correlated with each other. 
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Table 5-3 Correlation matrix. 
  Moist/compacted Treatment † 

‡

M

o

i

s

t

/

l

o

o

s

e 

 CH4 N2O CO2 Soil Water 
Soil 

Temp. 
pH NH4

+
 NO3

-
 

CH4  
0.990 

(<0.0001) 

0.656 * 

(0.039) 
+ 

0.696 

(0.025) 
+ + + 

N2O 
0.990 

(<0.0001) 
 

0.552 

(0.098) 
+ 

0.734 

(0.016) 
+ + + 

CO2 
0.620 

(0.042) 

0.723 

(0.012) 
 + + + 

0.576 * 

(0.082 ) 
+ 

Soil Water 
0.635 

(0.036) 

0.711 

(0.014) 

0.847 

(0.001) 
 + 

-0.578 * 

(0.0804) 

0.621 

(0.055) 

-0.806 * 

(0.0049) 

Soil 

Temp. 

0.596 

(0.053) 

0.692 

(0.018) 

0.931 

(<0.0001) 

0.955 

(<0.0001) 
 + + + 

pH 
-0.601 

(0.050) 

-0.557 

(0.075) 
+ + +  

-0.566 

(0.088) 

0.748 * 

(0.013) 

NH4
+
 

0.606 

(0.048) 

0.681 

(0.021) 

0.844 

(0.001) 

0.553 

(0.078) 

0.694 

(0.018) 
+  

-0.887 

(0.0006) 

NO3
-
 

-0.688 * 

(0.019) 

-0.523 

(0.099) 

-0.645 

(0.032) 

-0.745 * 

(0.0085) 

-0.561 

(0.072) 
+ 

-0.788 

(0.004) 
 

† Values above diagonal represent the Pearson Correlation Coefficients and their respective p-values (in parentheses), for the 

moist/compacted treatment. 

‡ Values below diagonal represent the Pearson Correlation Coefficients and their respective p-values (in parentheses), for the 

moist/loose treatment. 

* No linear relationship was present; instead, a monotonic relationship was observed. Therefore, a Spearman Correlation 

Coefficient and its p-value are given, rather than the Pearson Correlation Coefficients. 

+ Empty cells indicate no significant correlation. 

 5.4.2.2. Methane and carbon dioxide 

The CH4 and CO2 emission fluxes in Experiment 2 (Figs. 5-4g and h) followed the same 

trends as those in Experiment 1, with also two different sets of gas emission peaks. Those sudden 

peaks of CH4 and CO2 emission fluxes after watering the dry manure, also coincided with a 

sudden increase in manure temperature just 10 min after watering (Fig. 5-4b). One hour later, the 

CH4 emission peak of both moist manure treatments reached the background level (control), as 

also occurred in Experiment 1. Temperature in the moist/compacted manure also decreased to 

the background level, suggesting little microorganism activity at that time. 

In the moist/loose manure, after the first CH4 and CO2 emission peaks, its temperature 

steadily decreased and the CH4 emission flux also declined to the background level. The CO2 

emission flux, on the other hand, although decreasing, was still high 408 h later, when it also 

reached its background level. These results suggest that conditions in the manure were 

progressively becoming aerobic as the water content decreased. This trend also matched the large 

nitrification activity previously suggested in the same period of time. 

In the moist/compacted manure, 120 h after watering, the temperature began to steadily 

increase, reaching a maximum of 25°C at 408 h, 2°C above room temperature (Fig. 5-4b). This 
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second increase of temperature might have resulted from increasing microorganism activity 

deeper in the manure after several days of high water content and limited gas diffusion through 

the manure. At that time, a second and broader CH4 emission peak was reached. A CO2 emission 

peak coinciding with the CH4 emission peak was also observed. This suggests that in the vertical 

manure profile of the moist/compacted manure, two different conditions were reached at the 

same time. At the top surface, there was an increasing aerobic condition as water evaporated; this 

substrate section might be responsible for the increasing temperature and CO2 emission peak as 

well as for the nitrification activity previously reported for this treatment during that time 

interval. Furthermore, deeper in the manure, conditions became strongly anoxic; this condition 

might also be responsible for part of the increase in the substrate temperature and for the CH4 

emission peak at that time interval. 

As described by Paul (2007) and Segers (1998), microbial production of CH4 in soils 

results from the action of methanogenic microorganisms that decompose organic material in the 

absence of O2, using CO2 as an electron acceptor and a reduced organic compound as the donor. 

The reduction of CO2 occurs under extended reduced conditions such as in flooded soils or in 

any soil under severely limited O2 diffusion (Li, 2007; Paul, 2007). Major factors that influence 

CH4 emission flux in soils are soil O2, soil CH4 concentrations, and gas transport, which is driven 

mainly by soil water content and temperature (Segers, 1998). The initiation of CH4 production is 

not affected when the dry substrates are stored under dry air, O2, or N2 atmospheres but it is 

affected by storage under moist conditions (Mayer and Conrad, 1990). Therefore, the watering 

process, in addition to triggering N2O emission flux, might also have triggered the CH4 and CO2 

production, as shown in Figures 5-4g and h. Mikha et al. (2005) indicated that  after watering dry 

soil, there was a quick release of readily degradable organic compounds from dead cells, such as 

amino acids, NH4
+ 

compounds, and glycerol, which may be utilized by living microorganisms, 

resulting in a pulse of CO2 emission after watering.  

Unlike results in this study, previous studies have reported inverse correlation between 

N2O and CH4 (Hou et al., 2000; Johnson-Beebout et al., 2008).  Delaune and Reddy (2005) 

reported that in soil sediments, anaerobic conditions were reached at redox potential below +400 

mV, that the approximate range of denitrification activity was between +400 to +300 mV, and 

that the reduction of CO2, which yields CH4 (Paul, 2007; Segers, 1998), is below -200 mV. Hou 

et al. (2000) in a rice paddy soil and Johnson-Beebout et al. (2008) in a rice paddy greenhouse 
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experiment, reported that significant N2O emissions only occurred at approximated redox 

potentials above +200 mV and significant CH4 occurred below -200 mV. Based on those results, 

high emissions of both N2O and CH4 did not occur simultaneously. 

Unlike those previous studies, this study evaluated the effect on GHGs of water 

application on dry manure. Mayer and Conrad (1990) demonstrated that unlike forest and arable 

soils, rice paddy soils contain a large methanogenic biomass even under dry and aerobic soil 

conditions and that the production and emission of CH4 is only limited by the establishment of 

low redox potential as well as to the supply of dissolved organic compounds and oxidants. 

Moreover, Gattinger et al. (2007) reported increased methanogenic biomass in soils with high 

rate of manure application. In addition, a soil dominated by air-filled pore space and oxidizing 

conditions may quickly become saturated with water during recharge events and reduced 

conditions and denitrification may dominate temporarily (NRC, 1993b). After water application 

in Experiments 1 and 2, the potential large aerobic biomass present in the dry manure might have 

quickly consumed the O2 left in the substrate with a rapid O2 partial pressure drop (Li, 2007); 

with the consequent also rapid activation of the likely large population of denitrifiers and 

methanogens present in the dry manure. This is also supported by the sudden increase in manure 

temperature after water application (Fig. 5-4b). Therefore, sudden denitrification and 

methanogenesis could be present simultaneously, as consequence of water saturation of the dry 

manure, which limited O2 diffusion and enhanced microorganism activity. 

Table 5-3 shows that CH4 emission flux from the moist/loose manure was significantly 

directly correlated with water content, temperature, and NH4
+
 content, and inversely correlated 

with pH. It also showed a significant monotonic relationship with NO3
-
 content (Table 5-3). For 

the moist/compacted manure, on the other hand, CH4 emission flux was only significantly 

correlated with manure temperature. For CO2 emission flux, the moist/loose manure showed 

significant direct correlation between CO2 emission flux and manure water content, temperature, 

and NH4
+
 content, and inverse correlation with NO3

-
 content. Furthermore, the moist/compacted 

manure showed significant monotonic correlation between CO2 emission flux and NH4
+
 content. 

Figure 5-5 shows the temperature trends for the control (dry/loose) and for the moist 

manure treatments after water application (Experiment 2b). The processes that generated those 

temperatures were significantly different at 5% level of significance. For both moist manure 

treatments, there was a quick decrease of 0.5°C as soon as water was mixed within the manure. It 
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might be a result of direct contact of water with the buried sensors in the manure. After that 

initial temperature drop, temperature began and kept increasing (Fig. 5-5a). 

Within the first hour, the moist/loose manure showed an increment of 3.9°C, which is 

larger than the 3.0°C observed in Experiment 2a (Fig. 5-4b). Moreover, this treatment had a net 

temperature increment of 5°C, 3 h after watering, then dropping 3°C at 20h after watering (Fig. 

5-5b). After this, it showed a second peak of temperature, with an increment of 1°C. These 

temperature peaks coincided with the peaks of N2O and CH4 emission peaks previously 

described for the moist/loose manure. 

Temperature for the moist/compacted manure exhibited a similar trend as that for the 

moist/loose manure; however, its maximum increment was 2.75°C and the respective peak times 

were different, as shown in Figures 5-5a and b. Nevertheless, these temperature peaks also 

coincided with the GHG emission peaks. Field experiments (Chapter 3) indicated changes in 

manure temperature, over 9°C between different surface conditions within a pen in a beef cattle 

feedlot. In general, results shown in Figure 5-5 confirms results from previous experiments, as 

the temperature trends support the GHG emission peaks reported in this study. 

Thirty five days after first watering, a second watering event took place. As shown in 

Figure 5-5a (840 h), a new set of temperature peaks was observed; however, those peaks did not 

reach the levels of the previous ones. It might be a consequence of organic substrate and NH4
+
 

depletion because, in this experiment, no new urine or manure was added. That NH4
+
 depletion 

might result in a low nitrification activity in the manure, which will also decrease denitrification; 

therefore, those small temperature peaks might be a result of substrate limited microbial activity. 

Unlike these experiments, in an open-lot beef cattle feedlot, the N inputs as urine and manure on 

a pen surface may be considered inexhaustible; therefore, it might be suggested that large 

emission peaks of GHGs are emitted after each rainfall event on dry manure surfaces. 
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Figure 5-5 Manure temperature measured every 5 min during a 45-day period after two water 

applications: (a) manure temperature by treatment and (b) net temperature in the moist manure 

treatments with respect to the control. 

 5.5. Summary and Conclusions 

This study evaluated the effects of water application on greenhouse gas emission fluxes 

from feedlot manure. The following conclusions can be drawn: 

1. Emission fluxes of GHGs from dry/loose manure were significantly lower than those 

from moist manure. As soon as 10 min after water application on the dry manure, large 

peaks of emission fluxes were observed. Emission flux peaks for the moist/compacted 

manure were significantly lower than those for the moist/loose manure. Both the 

moist/loose and the moist/compacted manure showed a second set of GHG emission 

peaks, which were lower than the first peaks, a few days after water application. 

2. Apparently, a large but short-term denitrification occurred within 10 min after water 

application on dry manure, this might be responsible for the large GHG emission fluxes. 
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3. When the manure dried and with no additional inputs of urine, feces, or water, the GHG 

emission fluxes decreased to the level for dry/loose manure. 

4. For the moist/loose manure, direct significant correlation was found among N2O, CH4, 

and CO2 emission fluxes with water content, temperature, and NH4
+
 content; also 

significant but inverse correlation was observed between those GHGs and manure pH and 

NO3
-
 content. 

5. For the moist/compacted manure, N2O and CH4 emission fluxes showed significant direct 

correlation only with manure temperature.  
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Chapter 6 - Evaluation of Photo-acoustic Infrared Multi-gas 

Analyzer in Measuring Concentrations of N2O and CO2 Emitted 

from Feedlot Manure 

 6.1. Abstract 

Measurement of emission fluxes of greenhouse gases (i.e., N2O, CO2, and CH4) at the 

soil surface with photo-acoustic infrared multi-gas analyzers (PIMAs) is becoming more popular 

because of cost, portability, and ease of operation. This research evaluated the PIMA, in 

combination with static flux chambers (SFCs), in measuring the concentrations of N2O and CO2 

emitted from beef cattle feedlot manure. The concentrations of N2O and CO2 emitted from 

feedlot manure were measured simultaneously using a gas chromatograph (GC) and PIMA. The 

GC and PIMA were significantly correlated but differed in measured concentrations. The PIMA 

showed generally lower N2O concentrations and greater CO2 concentration than the GC. Linear 

regression equations were developed between the GC and PIMA and then verified using data 

from a related experiment. 

 6.2. Introduction 

Non-steady-state chambers or static flux chambers (SFCs) have been the most widely 

used method in measuring emission fluxes of trace gases from soil surfaces (Conen and Smith, 

2000; Hutchinson et al., 2000; Kroon et al., 2008; Venterea, 2010) because of their simplicity, 

ease of fabrication (De Klein, et al., 1999; Reichman and Rolston, 2002), low cost, and ease of 

operation (Healy et al., 1996). No other method has contributed more to the current knowledge 

of the magnitude and temporal and spatial variability of emission fluxes of trace gases, including 

GHGs, as well as their biochemical and biophysical processes and control (Livingston et al., 

2006; Livingston et al., 2005). Static flux chambers were identified as the method of choice for 

measuring trace gas fluxes at Long-Term Ecological Research (Hutchinson and Livingston, 

2001); and it has been well established that chamber technique is the best way to assess spatial 

variability of surface emissions (Guimbaud et al., 2011). 

The SFCs are often used in combination with GC analysis. The technique generally 

requires field sample collection and transport to a laboratory for GC analysis (Predotova et al., 

2011). Consequently, this technique is time-consuming and the results are commonly obtained 
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several days after field sampling. Another technique that is becoming more common involves 

use of real-time measuring instruments, including the photo-acoustic infrared multi-gas analyzer 

(PIMA) (Ambus and Robertson, 1998; Yamulki and Jarvis, 1999; Cayuela et al., 2010a). The 

PIMA is a portable and accurate gas monitor commonly used to measure concentrations in air 

and stack emissions of almost any gas that absorbs infrared radiation (California Analytical 

Instruments, 2012). Using a PIMA in combination with the SFC allows rapid collection of larger 

data sets of several gases simultaneously and their immediate analysis in situ (Predotova et al., 

2011). The portability of PIMA, the rapid and ease of measurement, linearity of gas 

concentrations, and capacity of measuring up to five gases simultaneously are significant 

advantages over the GC (De Klein et al., 1999; Iqbal et al., 2012). 

More researchers rely on the use of PIMA for the measurement of gases both at 

laboratory and field applications. Most of the research has been conducted on soil surfaces; no 

published research has compared GCs and PIMAs in beef cattle feedlots. Cayuela et al. (2010a) 

evaluated the effect of organic animal by-product wastes and a commercial mineral fertilizer as 

soil amendments on N2O and CO2 emissions from agricultural soils. Cayuela et al. (2010b) 

evaluated the impact of bioenergy by-products as soil amendments on GHG. Predotova et al. 

(2011) assessed the effect of several materials used for static flux chamber construction, on NH3
-
, 

CH4, CO2, and N2O concentration readings. Predotova et al. (2010) determined emissions of 

NH3, N2O, and CO2 from urban gardens. Osada and Fukumoto (2001) assessed emissions of 

NH3, CH4, and N2O from composting livestock waste; they reported that measured values of 

those gases obtained from the PIMA technique compared to the respective values obtained from 

conventional methods (i.e., sulfuric acid trap for NH3 and GC for CH4 and N2O) showed small 

differences when total emissions from composting swine waste were compared. Ambus and 

Robertson (1998) also reported that N2O and CO2 fluxes based on gas concentrations measured 

with both methods were not significantly different. Nevertheless, Akdeniz et al. (2009) reported 

significant differences between N2O concentrations measured with both methods. Iqbal et al. 

(2012) tested six PIMAs simultaneously connected to a SFC and compared those results to gas 

concentrations from GC analysis. They reported that soil gas flux computation based on gas 

concentrations simultaneously measured with both a SFC/PIMA and a SFC/GC were similar; 

they also reported that linear regression between the fluxes computed by those two methods had 

R
2
 > 0.99. 
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More research is needed to evaluate the PIMA in measuring GHG concentrations. This 

research is expected to contribute to the still limited data on the use of PIMA, in combination 

with SFCs, in measuring the concentrations of GHGs emitted from open beef cattle feedlots. The 

major objective of this research was to evaluate the PIMA in measuring the concentrations of 

N2O and CO2 emitted from beef cattle feedlot manure, under both field and laboratory 

conditions. Greenhouse gases analyzed were N2O and CO2 and data were obtained from field 

and laboratory experiments that are described in other chapters of this thesis. 

 6.3. Materials and Methods 

To compare the GC and the PIMA, data from three research studies were analyzed. The 

first study was a field study to quantify the N2O emission flux from pen surfaces in a commercial 

beef cattle feedlot (Chapter 3).The second study was conducted under controlled laboratory 

conditions to evaluate the effectiveness of surface amendments in mitigating GHG emissions 

from feedlot manure (Chapter 4). The third study was a controlled laboratory study that was 

designed to determine the effects of water application on GHG emissions from feedlot manure 

(Chapter 5). In all three studies, SFCs were used and the concentrations of N2O and CO2 were 

measured using a PIMA. In addition, gas samples were collected from the SFCs and analyzed in 

the laboratory using a GC. A total of 1708 paired (GC and PIMA) concentration values were 

collected. Because of GC calibration limitations, samples in which N2O concentrations were 

larger than 100 ppm from the GC were not considered. Data were also screened for outliers. A 

total of 1646 paired data points of gas concentrations of N2O and 1685 paired data points of CO2 

concentrations were used in this study. Approximately 70% of the data was used for regression 

analysis and the remaining 30% was set aside for verification of the regression equation. 

 6.3.1. Studies 

The first study involved field measurements in which SFCs were used to sample GHGs 

from pen surfaces in a beef cattle feedlot. Details of the SFC design, experimental setup, and 

measurement protocol are presented in Chapter 3. For the GC method, gas samples were 

collected from the SFC headspace using 20 mL disposable plastic syringes and injected into 

evacuated 12-cc glass vials. During sampling, six 20-cc samples were drawn from each SFC 

headspace at time intervals of 0, 5, 10, 15, 20, and 30 min. Gas samples were analyzed for N2O 

concentrations using a GC (Model GC-14B, Shimadzu Scientific Instrument, Columbia, MD) 



115 

 

with a Porapak-Q (80/100 mesh) stainless steel column (0.318-cm dia. by 1 m length) and an 

electron-capture detector (ECD); carrier gas was UHP/zero nitrogen. The oven, injector, and 

detector temperatures set up were 60, 100, and 300°C respectively. For CO2 concentrations, gas 

samples were analyzed in a GC (Model GC-8A, Shimadzu CR-501Chromatopac) fitted with a 

thermal conductivity detector (TCD); the carrier gas was UHP/zero Helium. The oven, 

injector/detector temperatures were set at 65°C and 160°C, respectively.  

For the PIMA method, the same SFCs were simultaneously connected by two-1.0 m long 

Teflon tubes as inflow and outflow to a PIMA (Model 1312, Innova AirTech Instruments, 

Ballerup, Denmark), as shown in Figure 6-1a. The PIMA was equipped with optical filters for 

measuring N2O, CH4, CO2, NH3, and water vapor and set up to compensate for the cross-

interference of water vapor with N2O and CO2. The PIMA collected concentration data every 50 

± 2 s during the 30-min sampling period for each SFC, for a total of 36 concentration readings 

for each gas. The first two concentration readings were considered part of the initial flushing of 

the PIMA sampling lines and therefore discarded. From the remaining 34 gas concentration 

readings, the concentrations corresponding to times 0, 5, 10, 15, 20, and 30 min were used to 

compare with those from the GC analysis. At least a 10-min period elapsed between chambers 

sampling allowing ambient air to purge the PIMA. 

In the second study, three out of the six laboratory experiments described in Chapter 4 

were set up to measure GHG concentrations using both methods. Those experiments evaluated 

the effect of topical application of: (1) organic residues and biochar on moist manure, (2) biochar 

and activated carbon on moist manure, and (3) organic residues and biochar on dry manure. The 

third study evaluated the effect of water application on GHG emissions from feedlot manure 

(Chapter 5). The GHG concentrations were measured with both methods. The experimental set 

up of the second and third studies are described in Chapters 4 and 5, respectively. Briefly, as 

shown in Figure 6-1b, 1-L glass containers were used as SFCs and a PIMA was connected by 

two 0.5-m long Teflon tubes as inflow and outflow to the containers. In order to account for the 

headspace gas equilibrium due to diffusion of gases from the manure, the gas sampling interval 

was shortened to 10 min (Predotova et al., 2010). During sampling, the PIMA collected 12 

readings of N2O and CO2 concentrations. The first gas concentration reading was discarded. 

Each sampling interval was followed by a 5-min purging period, allowing fresh air to purge the 

PIMA before continuing the measurement to the next container. Concentrations corresponding to 
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the syringe sampling times were used to compare with those from the GC analysis. For GC 

analysis, 15-cc gas samples were collected from the container headspace using 20-mL disposable 

plastic syringes and placed into evacuated 12-mL glass vials at time intervals of 0, 5, and 10 min. 

A total of 1388 concentration measurements of N2O and CO2 were obtained. 

 

Figure 6-1 Photographs of the experimental set up: (a) field measurement with a static flux 

chamber and (b) laboratory set up. 

 

 6.3.2. PIMA and GC calibration 

The PIMA was calibrated in accordance with the manufacturer’s recommendations 

(Luma Sense Technologies, 2009) using standard calibration gases and diluter with dry air. For 

the water-vapor filter, zero-point calibration using zero-gas (zero air N2) and span-gas calibration 

(with a known concentration of water vapor) were performed. Full calibration of each optical 

filter consisted of zero-point calibration, humidity interference calibration, cross interference 

calibration, and span-gas calibration. Consequently, each optical filter was corrected for zero, 

water vapor interference, cross interference compensation among the other gases being 

measured, and against known concentrations of standard calibration gases on each measured 

compound.  

Calibration curves of the GC for CO2 analysis were obtained each time a new set of air 

samples were analyzed or when more than two days elapsed between gas analysis. Fixed 

volumes (0.2, 0.4, 0.6, 0.8, and 1.0 cc) of standard CO2 gas (10,000 ppm) were consecutively 

injected into the GC and analyzed for CO2 concentration. Linear regression analysis was 
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conducted between the peak areas of the chromatograms and their respective CO2 masses. At 

least four different sets of CO2 standard gas were analyzed each time, resulting in a linear 

calibration curve for each set. An additional set of four 0.5-cc standard gas was analyzed in the 

GC and the average of those four peak areas was taken for validation of the complete set of 

calibration curves. The calibration curve that reported the smallest difference in concentration 

compared to the standard gas was selected for the respective batch of unknown samples being 

analyzed. 

Regression analysis was performed with four N2O standard gas concentrations (0.035, 

3.5, 6, and 60 ppm) and their respective peak areas of the chromatograms. The analysis was 

performed by a peak area integrator incorporated to the GC. The GC instrumental set up reported 

directly N2O concentrations in ppm. This calibration was performed once at the beginning of 

each measuring season. Every day before gas analysis, a set of four 3.5-cc of 3.5 ppm standard 

gas was analyzed in the GC for calibration validation purposes. During gas analysis, before and 

after every batch (6 to 9 unknown gas samples), the calibration of the GC was validated based on 

injection of at least two 3.5-ppm standard gas. Validation of calibration was considered good if 

results were within ±5% difference compared to the N2O standard gas injected. When results 

were out of the accepted range, the integrator was adjusted based on the current reported peak 

area for the N2O standard gas used as validation. 

 6.3.3. Statistical analysis 

From the gas concentration values from the GC and/or PIMA, emission fluxes can be 

determined following the procedure outlined in Chapters 3 and 4. For example, from the GC 

measurements in the field study, emission fluxes for each SFC can be calculated using three 

different sets of gas concentration readings (i.e., 0-5-10 min, 0-10-20 min, and 0-15-30 min). 

Preliminary analysis of N2O data, however, showed that the three emission fluxes were 

significantly different. It appears then the calculated emission flux depends on the flux 

computation approach; as such, this chapter focused on the gas concentration readings, rather 

than the computed emission fluxes. Gas concentrations from the two measurement methods were 

analyzed for correlation, linear regression, and paired comparison by Proc Corr, Proc Reg, and 

Proc Ttest of SAS (SAS, 2008), respectively. The level of significance was set at α=5%. 
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 6.4. Results and Discussion 

Data obtained from Study 1 (field) and from Study 2 - experiment 2 resulted in mostly 

low N2O concentrations with respective mean values of 0.76 and 0.84 ppm, measured with the 

GC method. Data from Study 2 –experiments 2 and 3 resulted in very low N2O concentrations 

(means= 0.84 and 0.56 ppm, respectively), while data from Study 3 resulted in mostly high N2O 

concentrations (mean= 3.24 ppm). Moreover, data from Study 2 - experiment 1 had a range from 

low to high N2O concentrations (mean= 12.54 ppm). Table 6-1 summarizes those results. Data 

from Study 1, Study 2- experiments 2 and 3, and from Study 3 were used for the regression 

analysis between the GC and PIMA. Because the Study 2 - experiment 1 had the widest range of 

N2O concentrations, which included the N2O field range (Chapter 3), and the largest 

experimental data set (n=643 for N2O and n=647 for CO2), 75% of the data from this experiment 

was used for verification of the regression analysis. 

 

Table 6-1 Summary of measured gas concentrations using the GC. 

Experiment 
N2O (ppm) CO2 (ppm) 

N Minimum Mean Maximum N Minimum Mean Maximum 

Study 1 – Field 277 0.31 0.76 3.29 306 543 3729 17143 

Study 2- Experiment 1 643 0.54 12.54 91.7 647 443 26.31 11059 

Study 2- Experiment 2 185 0.56 0.84 4.75 185 426 1936 6393 

Study 2- Experiment 3 360 0.33 0.56 1.19 360 426 767 1221 

Study 3 181 0.4 3.24 90.34 187 395 2508 8218 

 

Paired t-test indicated that N2O concentrations measured with PIMA and GC were 

significantly different (p≤ 0.001). Results showed that the GC measurements of N2O were 

consistently higher than the PIMA measurements, similar to the observations reported by De 

Klein et al. (1999). Yamulki and Jarvis (1999) reported N2O fluxes measured with PIMA were 

higher by a factor of 1.4. When the gas concentrations measured with PIMA and GC were 

compared, the overall mean N2O concentration measured with PIMA was 41.9% lower than that 

measured with GC (Table 6-2). Iqbal et al. (2012) also reported that absolute differences between 

the two N2O measurements methods were larger as N2O concentrations decreased. 
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The overall mean CO2 concentration measured with PIMA was 6.6% larger than that 

measured with GC. Paired t-test also indicated that the measurement methods were significantly 

different (p≤ 0.001).  

 

Table 6-2 Differences in gas concentrations measured by PIMA and GC methods. 

N2O CO2 

Range of PIMA 

Measurement (ppm) 

Difference 

(%) † 

Sample 

(n) 

Range of PIMA 

Measurement (ppm) 

Difference 

(%) † 

Sample 

(n) 

0 ≤ PIMA ≤ 1 - 28.2 684 0 ≤ PIMA ≤ 1000 -16.3 595 

1 < PIMA ≤ 5 9.3 413 

 

 

1000 < PIMA ≤ 5000 12.0 439 

5 < PIMA ≤ 10 - 65.7 37 5000 < PIMA ≤ 10000 10.8 146 

10 < PIMA ≤ 40 - 63.6 24 10000 < PIMA ≤ 16000 11.0 13 

0 ≤ PIMA ≤ 40 - 41.9 1158 0 ≤ PIMA ≤ 16000 6.6 1193 

 0 ≤ PIMA ≤ 40 - 12.2 
‡
 488 0 ≤ PIMA ≤ 16000 3.1 

‡
 492 

 † Difference between the two methods was computed as the difference between PIMA and GC as a proportion of the GC 

measurement. Negative difference means that the PIMA concentration was lower than the GC concentration for that gas 

concentration range. 
‡  Computed from validation of the linear regressions obtained from 1158 and 1193 data points of N2O and CO2, respectively. 

 

Even though individual paired gas concentrations of N2O and CO2 measured with PIMA 

and GC were significantly different, there was significant correlation between the measurement 

methods for N2O and CO2 concentrations. Table 6-3 summarizes the correlation between PIMA 

and GC methods on the concentrations of N2O and CO2 emitted from feedlot manure. When 

measured gas concentrations were low (<1.0 ppm for N2O or <1,000 ppm for CO2), the Pearson 

correlation coefficients were lower (<0.40). Nitrous oxide concentrations larger than 10 ppm 

resulted in Pearson correlation coefficients larger than 0.80. In the case of CO2, concentrations 

larger than 5000 ppm resulted in Pearson correlation coefficients larger than 0.90. In general, the 

Pearson correlation coefficient was lower at low gas measured concentrations than at larger 

concentrations.  
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Table 6-3 Pearson pairwise correlation between PIMA and GC GHG measurements. 

PIMA Gas Concentration Interval   

(ppm) † 

PIMA/GC Correlation 

N2O ‡ 

 

CO2 ‡ 

 N2O ≤ 1 0.39 (<0.0001)  

N2O ≤ 5 0.60 (<0.0001)  

N2O ≤ 10 0.83 (<0.0001)  

 N2O ≤ 100 0.96 (<0.0001)  

CO2 ≤ 1000  0.33 (<0.0001) 

CO2 ≤ 5000  0.88 (<0.0001) 

CO2 ≤ 10000  0.91 (<0.0001) 

CO2 ≤ 15000  0.92 (<0.0001) 

Data from the Study 1-Field and from Study 2 (Experiments 2 and 3) and Study 3. 

† Interval of the GHG measured with PIMA. 

‡ Values represent Pearson Correlation Coefficients and their respective p-values (in parentheses). 

 

Linear regression analysis on data from Study 2 - experiment 1 (moist manure, Figs. 6-2b 

and d) and from experiment 3 (dry manure, Figs. 6-2a and c) indicated that the drier the manure, 

the lower the R
2
 value of the linear relationship between the GC and PIMA concentrations. Dry 

manure pen surfaces have small GHG emission fluxes (Chapters 3 and 5). Even though all linear 

regressions (Fig. 6-2) were significant (α= 5%), when field conditions were dry, with small GHG 

fluxes and small N2O and CO2 concentrations, the PIMA did not agree well with the GC. 

Nevertheless, gas concentrations from the PIMA, on dry or moist soil conditions, generally 

showed a smooth increase with time (Fig. 6-3). However, gas concentrations obtained through 

the GC method did not show that stable increment of concentrations with time, neither on dry 

nor on moist manure conditions. Both N2O and CO2 exhibited linear response, close to unity, for 

a wide range of concentrations measured with the PIMA, as also described by Ambus and 

Robertson (1998), Iqbal et al. (2012), and Yamulki and Jarvis (1999). 
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Figure 6-2 Linear regression between GHG concentrations measured by the GC and PIMA in 

two laboratory experiments: (a) low N2O concentration measured in dry manure, (b) large N2O 

concentration measured in moist manure, (c) low CO2 concentration measured in dry manure, 

and (d) large CO2 concentration measured in moist manure. 
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Figure 6-3 Typical regression between GHG concentrations and time in the chamber headspace: 

(a) N2O measured with the PIMA, (b) N2O measured with the GC, (c) CO2 measured with the 

PIMA, and (d) CO2 measured with the GC. 

 

Linear regression was tested using paired data points from GC and PIMA measurements 

of N2O and CO2 gas concentrations (Fig. 6-4). The linear regressions were significant (p < 0.001) 

with R
2
 values of 0.93 and 0.85 for N2O and CO2, respectively. The relationship between the GC 

and PIMA in N2O and CO2 concentrations can be described by the equations obtained from 

linear regression as shown in Figure 6-4. The 95% CI for the intercept / slope of N2O and CO2 

are respectively as follows: (0.62 to 0.73) / (0.34 to 0.35) and (125 to 273) / (0.95 to 1.00). 
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Figure 6-4  Linear regression between GHG concentrations measured by both GC and PIMA: (a) 

N2O and (b) CO2 concentrations. Solid lines represent the least-squares regression lines, while 

dashed lines represent 1:1 correspondence. 

 

The residual plot in Figure 6-5a shows that for N2O, the data were more disperse at 

concentrations lower than 5 ppm and for concentrations greater than 10 ppm. Between 5 and 10 

ppm, N2O concentrations measured with the GC were consistently larger than those measured 

with the PIMA. For CO2, on the other hand, the data dispersion increased as CO2 gas 

concentrations measured with the PIMA method increased (Fig. 6-5b). When the regression lines 

are forced to pass through the origin (0), the equations indicated that N2O concentrations 

measured with the PIMA were consistently 2.7 times lower than the N2O measured with the GC. 

The CO2 concentrations measured with the PIMA were consistently 1.02 times larger than the 

CO2 measured with the GC.  
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Figure 6-5 Residual plots for (a) N2O and (b) CO2 concentrations. 

 

When the linear equations were verified with the validation data set (Fig. 6-6), there was 

no significant difference between means of measured (PIMA) and predicted N2O concentrations. 

Mean of measured CO2 concentrations with PIMA was also not significantly different from the 

predicted CO2 concentrations. Figures 6-6a and c plot the relationships between the two methods 

for the verification data set both for N2O and CO2, respectively; similar trends as in the previous 

data set can be seen (Figs. 6-4 and 6-6).  When the regression equations were applied on the 

verification data set, there was better agreement between GC and PIMA measurement methods 

(Fig. 6-6b and d). The overall mean N2O and CO2 gas concentrations measured with PIMA were 

12.2% lower and 3.1% larger than the average predicted values, respectively.  
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Figure 6-6 Verification of the linear regression equations: (a) actual relationship between GC and 

PIMA N2O measurement methods, (b) linear regression between predicted N2O PIMA and 

measured N2O PIMA, (c) actual relationship between GC and PIMA CO2 measurement methods, 

and (d) linear regression between predicted CO2 PIMA and measured CO2 PIMA. Solid lines 

represent the least-squares regression lines, while dashed lines represent 1:1 correspondence. 

 

Verification of field data from the commercial open-lot beef cattle feedlot was also 

intended. In this case, the data were configured such that the complete data set from the 

laboratory experiments (Study 2 - Experiments 1, 2, 3 and Study 3) were used for the regression 

analysis, while data from Study 1 - Field were used for verification. Because the range of the 

laboratory data were from low to very high N2O concentrations and data from the field, obtained 

under dry manure conditions, had low N2O concentrations (Table 6-1), there was no good 

agreement of N2O measured by the two methods (Figs. 6-7a and b). However, CO2 
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concentrations measured by the two methods showed better agreement (Figs. 6-7c and d). 

Therefore, a complete data set within the field range, from low to medium (50 ppm) of N2O 

concentrations is needed to compute the relationship between both measurement methods. To be 

able to validate those relationships, a second data set of GHG concentrations obtained directly 

from the field is desirable. 

 

Figure 6-7 Verification of the linear regression equations with a field data set: (a) measured N2O 

concentrations - GC vs. PIMA, (b) predicted vs. measured N2O concentrations - PIMA, (c) 

measured CO2 concentrations – GC vs. PIMA, and (d) predicted vs. and measured CO2 

concentration - PIMA. Solid lines represent the least-squares regression lines, while dashed lines 

represent 1:1 correspondence. 

 

Linear regression between N2O fluxes computed from N2O concentrations measured with 

PIMA and GC has been reported (Ambus and Robertson, 1998; Yamulki and Jarvis, 1999). Both 

studies reported different linear regression equations. Linear regression has been also reported 

for CO2 fluxes computed from PIMA and GC concentration measurements (Ambus and 
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Robertson, 1998). From the linear regression, Ambus and Robertson (1998) reported a factor of 

1.05 to compare both N2O flux measurement in the range of fluxes typically observed in 

cropping systems i.e., 0.30, 0.16, 0.133, with peak of 0.67 mg m
-2

 h
-1

, as reported by Kanako et 

al, 2006; Kanako et al., 2002; Lee et al., 2008; Saggar et al., 2004, respectively.  

In this study, N2O concentrations were measured on dry and moist manure from beef 

cattle pen surfaces. Fluxes from moist manure in beef cattle feedlots have been reported as much 

as 20 times larger than fluxes from cropping soils (Chapter 3). When the GC is used for N2O 

analysis, saturation of the ECD at high N2O concentrations may result in non-linear relationship 

(Yamulki and Jarvis, 1999). Because this study dealt with high N2O concentrations, it might be 

expected to have larger differences between the PIMA and GC. 

Individual differences on N2O gas concentrations measured with PIMA and GC were 

larger than in previous studies; there was no obvious explanation for this discrepancy, as also 

reported by De Klein et al. (1999) and Yamulki and Jarvis (1999). In explaining those 

differences, some researchers have reported that crossed-interferences between CO2 and water 

vapor with N2O negatively affected the N2O measurement with the PIMA (Akdeniz et al., 2009; 

Yamulki and Jarvis, 1999). However, other researchers suggested that the differences between 

methods were a consequence of calibration error rather than CO2 and water vapor interference 

with N2O (Iqbal et al., 2012). Ambus and Robertson (1998) also reported no CO2 and water 

vapor cross-interference with N2O gas measurements through the PIMA method.  

In this study, the accuracy of the PIMA calibration stability over time was unknown. 

Furthermore, regarding GC analysis, the potential error associated with gas standards used for 

GC calibration (Iqbal et al., 2012) as well as potential contamination of the carrier gas, GC needs 

of maintenance, GC calibration accuracy, and gas sample manipulation, could yield significant 

bias in the GC gas analysis. Even though GC technique has been the most common method to 

measure N2O and CH4, and to assess emission fluxes, it is quite difficult to determine which 

method is closer to the true value, as reported by Iqbal et al. (2012). 

 6.5. Summary and Conclusions 

This research evaluated a photo-acoustic infrared multi-gas analyzer attached to static 

flux chambers for the measurement of N2O and CO2 concentrations from feedlot manure, under 
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both field and laboratory conditions, in comparison with gas chromatography. The following 

conclusions are drawn: 

1. Paired t-test on the data set indicated that the GC and PIMA measurement methods of 

N2O and CO2 gas concentrations were significantly different. The mean N2O 

concentration measured with PIMA was 41.9% lower than that measured with the GC. 

The mean CO2 concentration measured with PIMA, on the other hand, was 6.6% larger 

than that measured with the GC. The PIMA and GC measurement methods for N2O and 

CO2 concentrations were significantly correlated and linearly related (R
2
=0.93and 0.85 

for N2O and CO2, respectively).  

2. Verification of the linear regression equations with data set from a related experiment 

showed good agreement between predicted and measured concentrations of N2O and 

CO2. 
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Chapter 7 - Conclusions and Recommendations 

 7.1. Conclusions 

Emission of greenhouse gases (GHGs), including nitrous oxide (N2O), methane (CH4), 

and carbon dioxide (CO2), from open beef cattle feedlots is becoming an environmental concern; 

however, scientific information on emissions and abatement measures for open-lot beef cattle 

feedlots is limited.  This research was conducted to quantify GHG emissions from feedlots and 

evaluate abatement measures for mitigating emissions. Specific objectives were to: (1) measure 

the N2O emission fluxes from pen surfaces in a commercial open-lot beef cattle feedlot, as 

affected by pen surface characteristics and weather conditions; (2) evaluate the effectiveness of 

surface amendments in mitigating GHG emissions from feedlot manure; (3) evaluate the effects 

of water application on GHG emissions from feedlot manure; and (4) compare the photo-

acoustic infrared multi-gas analyzer and gas chromatograph in measuring the concentrations of 

N2O and CO2 emitted from feedlot manure. 

The following conclusions were drawn from this research: 

1. Field measurements at a commercial cattle feedlot showed that emission fluxes of N2O 

varied with pen surface condition, with the moist/muddy surface condition having the 

largest median flux (2.03 mg m
-2

 h
-1

), followed by the dry and compacted, dry and loose, 

and flooded surfaces with median fluxes of 0.16, 0.13, and 0.10 mg m
-2

h
-1

, respectively. 

Emission fluxes varied seasonally as affected by rainfall events and soil temperature. 

Depending on the surface condition, emission fluxes were affected by one or more 

feedlot manure properties, such as water content, temperature, total C, pH, NO3
-
, and 

NH4
+
.  

2. Laboratory experiments on feedlot manure indicated that topical application of organic 

residues and biochar on dry manure significantly reduced N2O and CO2 emission fluxes 

but did not affect CH4 emission fluxes. For moist manure (0.35 g g
-1

 wet basis), biochar 

and activated carbon significantly reduced GHG emissions at days 10 and 15 after 

application; the other amendments had little effects on GHG emissions. Laboratory 

experiments suggested that adsorption by biochar or activated carbon is a possible 

mitigation mechanism for N2O.  
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3. Water application significantly influenced GHG emissions from feedlot manure. A few 

minutes after water application on dry manure, large peaks of N2O, CH4, and CO2 

emission fluxes were observed compared to the control (dry manure). Both the 

moist/loose and the moist/compacted manure showed a second set of GHG emission 

peaks, although lower than the first peaks, a few days after water application. Emission 

fluxes of N2O, CH4, and CO2 were positively correlated with water content, temperature, 

and NH4
+
 content and inversely correlated with manure pH and NO3

-
 content. 

4. Comparison of the gas chromatography and photo-acoustic infrared multi-gas analyzer 

showed that they were significantly correlated but differed in measured concentrations of 

N2O and CO2. The photo-acoustic analyzer showed generally lower N2O concentrations 

and higher CO2 concentrations than the gas chromatograph. 

 7.2. Recommendations for Further Studies 

This research used both field and laboratory research to measure emissions of GHGs 

from feedlot manure and to evaluate the effectiveness of surface amendments in controlling 

GHG emissions. The following are recommendations for further study: 

1. Because field studies require large amounts of resources, this work focused only on two 

cattle feedlots located in Kansas, i.e., one large commercial open-lot beef cattle feedlot 

and one research-scale beef cattle feedlot. Additional field sampling campaigns on other 

feedlots should be conducted. Because GHG emissions largely depend on the physical 

and chemical characteristics of the feedlot manure and on microorganism activity, and 

because N2O emission fluxes in the beef cattle feedlot significantly varied with pen 

surface conditions, field measurements should include emission fluxes of N2O and CH4, 

as well as the physical, biological, and chemical characteristics of the feedlot pen 

surfaces.  Measurements should also include nitrification/denitrification activities, redox 

potential, water content, temperature, NO3
-
 and NH4

+
 content, and characterization of the 

microorganism population in the manure under different conditions. 

2. Laboratory research indicated the potential of biochar in minimizing GHG emissions 

from feedlot manure. Field-scale measurements should be conducted to evaluate the 

effectiveness of biochar and other promising materials. A better understanding of the 

mechanisms involved in GHG emission mitigation by biochar should be developed.  
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3. Laboratory research also indicated the potential increase in GHG emissions from feedlot 

manure after water application. Field measurements should also be conducted to 

determine the effects of water sprinkler systems (for dust control) and rainfall events on 

GHG emissions from pen surfaces. A better understanding of the mechanisms involved in 

GHG emission associated with water application should also be established. 

4. This research considered emissions from pen surfaces. Measurements of the relative size 

of the different pen surface conditions must be conducted to develop GHG emission 

factors from pen surfaces. There is also a need to quantify emissions from the whole 

feedlot. Emissions estimating methodologies should be developed to predict GHG 

emissions from the whole feedlot or components of a feedlot. The applicability of the 

DNDC (denitrification-decomposition) model and/or other models in predicting GHG 

emissions from cattle feedlots should be evaluated. 

5. Comparison of the photo-acoustic infrared multi-gas analyzer and gas chromatograph 

indicated significant differences in measured values. Reasons for those differences should 

be established and, if necessary, correction factors should be established for the use of the 

photo-acoustic infrared multi-gas analyzer. 
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Appendix A - Static Flux Chamber Design 

The static flux chamber (SFC) technique for measuring emission of greenhouse gases 

(GHGs) from soil surfaces offers the most useful approach (Hutchinson and Mosier, 1981). 

However, it is necessary to implement a good design and follow a protocol to overcome potential 

errors. Several chambers have been designed and implemented in the field to measure carbon 

dioxide (CO2), methane (CH4), and nitrous oxide (N2O), among other gases from the soil surface. 

The SFC technique is also applicable to measure emission rates from hazardous waste land 

treatment and land fill facilities, as well as from contaminated areas with volatile organic 

compounds due to spills and leaking from underground pipelines and storage tanks and from 

surface impoundments (Kienbusch, 1986). A summary of the main aspects considered in SFCs 

design is presented in this appendix.  

 A.1. Types of Chambers 

Flux chambers can be classified as: (1) open soil covers, (2) closed soil covers, and (3) 

sealed soil covers (Hutchinson and Mosier, 1981; NRC, 2003). 

1. Open soil covers are chambers with external forced air flow-through circulation 

(Hutchinson and Mosier, 1981; NRC, 2003). External clean and dry sweep air is used to 

continually dilute the emitted gases from the enclosed soil surface as well as for 

removing the gas mixture from the chamber. The gas mixture passes through a sampling 

port wherein the concentrations of the gases of interest are measured (Kienbusch, 1986). 

These chambers continuously replace the internal air-mixture by the sweep air, which 

maintains gas concentrations inside the chamber in a similar way as in the open soil 

surface. 

2. Closed soil covers, referred to here as SFCs, have two main characteristics: (a) there is no 

sweep air, so the emitted gas accumulates within the chamber and (b) they include vents 

through which external pressure fluctuations are transmitted to the internal spaces 

(Hutchinson and Mosier, 1981). The chambers may or may not include internal forced air 

circulation (Hutchinson and Mosier, 1981). Internal forced air circulation is provided to 

achieve uniform gas concentration within the chamber. 



135 

 

3. Sealed soil covers are sealed and do not include external sweep air or vent. The chambers 

may or may not include internal forced air circulation (Hutchinson and Mosier, 1981). 

 

An SFC could represent an invasive technique because it can influence the 

microenvironment within the chamber. Because gas concentration gradient in the headspace 

decreases with time (Hutchinson and Mosier, 1981), the main impact of this technique is 

observed whenever the chamber is deployed on the surface and utilized to perform gas sampling 

for several hours from the same enclosed space. To minimize the problem, they should be used 

for periods less than 40 min continuously (Rochette and Eriksen-Hamel, 2008). In situations 

requiring continuous gas measurement, open soil covers should be used. For periodic and 

instantaneous gas sampling, closed soil covers are recommended because lower fluxes can be 

measured and the presence of the vent maintains equal pressure outside and inside the chamber, 

thereby reducing potential measurement errors (Hutchinson and Mosier, 1981). 

Rochette and Eriksen-Hamel (2008) classified the chambers in two main groups based on 

deployment method: 

1. A push-in chamber is a one-piece body. The complete chamber is inserted into the soil at 

the time of measurement. This type of chambers has the disadvantage of producing a 

disturbance in the soil surface at sampling time. 

2. A composed chamber is a two-piece body (base and chamber). The base has to be 

inserted into the surface previously to the sampling process. After base insertion, the 

chamber is adjusted onto the base at the moment of sampling. The composed chamber is 

preferred because the previous deployment of the base decreases the potential negative 

effects in the gas flux at the sampling time. 

 

The basic design of sealed soil covers, suggests that those chambers can negatively affect 

the microenvironment within them; therefore, they were not considered in this study. A 

comparative analysis between types of flux chambers is shown in Table A-1. 
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Table A-1 Advantages and disadvantages of soil covers. 

Chamber Type Advantages Disadvantages 

Open Soil Cover  Continuous replacement of the 

enclosed air, maintaining gas 

concentrations inside the chamber in 

a similar way as in the open soil 

surface. 

 Good for continuous flux 

monitoring. 

 Potential for influx of gases from 

outside the chamber. 

 Needs ultrahigh purity air for 

purging between samples 

whenever high and low 

concentrations samples are 

sequentially analyzed. 

 Needs sweep air equal or better 

than commercial ultrahigh purity 

air grade. 

 Needs high accurate air flow 

meter with no internal rubber 

parts. 

 

Closed Soil Cover  Lower detection limits. 

 Simple and economical. 

 Good for short periods of time for 

instantaneous flux computation. 

 Potential for influx of gases from 

outside the chamber is reduced. 

 Requires less time to perform a 

complete cycle of instantaneous gas 

concentration measurement. 

 Air conditions in the enclosure 

space may vary because the 

emitted gas accumulates within 

the headspace whenever it is 

operated continuously. 

 Should not be used for 

continuous sampling for more 

than 40 minutes. 

Sealed Soil Cover  Simple and economical. 

 May be used for shorter periods of 

time for instantaneous flux 

computation. 

 Air pressure and temperature 

might change quickly within the 

enclosed space.  

 Air conditions in the enclosure 

may vary because the emitted 

gas accumulates within the 

headspace. 

 Must be used for shorter times 

than the closed covers. 
Sources: Hutchinson and Mosier, 1981; NRC, 2003; Rochette and Eriksen-Hamel, 2008. 

  

 A.2. Static Flux Chamber Design 

Based on data compilation of 356 studies of N2O emission flux, Rochette and Eriksen-

Hamel (2008) reported characteristics listed below and their respective score values as “good” or 

“very good” that must be considered in order to design an adequate SFC.  
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1. Type of chamber: Composed base and chamber equipped with vent and insulation; scored 

as “very good”. 

2. Ratio of chamber’s height to deployment time ˃ 40 cm hr
-1

.  This could be approximated 

as 8 in. height for a deployment time of 30 min; scored as “very good”; 5 to 6 in. height 

and 30 min are scored as “good”. 

3. Ratio of area to perimeter:  6.26 < d/4 < 10 cm. This could be approximated as a diameter 

equal to 10 to 16 in.; scored as “good”. Larger than 16 is scored as “very good”. 

4. Ratio of chamber base insertion to deployment time ≥ 12 cm/hr. This could be 

approximated as an insertion of 6 cm for a deployment time of 30 minutes; scored as 

“very good”. 

5. Chamber deployment time: ≤ 20 minutes, scored as “very good”, or 30 to 40 min, scored 

as “good”. 

6. Number of samples during deployment time: More than 3 samples per deployment is 

scored as “very good”; 3 samples, is scored as “good”. 

 

The SFCs for measuring GHG emission fluxes from cattle feedlots were made from PVC 

pipe 12-in. diameter. The net volume of air after chamber insertion (6 cm) into the soil was 

approximately 12 L. The pressure equalizer (vent tube) was designed following the 

recommendations by Hutchinson and Mosier (1981). Table A-2 shows the parameters selected 

for the SFC design. Figure A-1 shows the chamber design. Figure A-2 shows pictures of the 

fabrication process. Figure A-3 shows the chamber sampling in the field.  

 

Table A-2 Parameters selected for the static flux chamber design. 

Parameter Design Graded Score † 

Type of chamber 
Composed of base and chamber, with 

insulation and equipped with vent 
Very good 

Chamber diameter 30 cm Good 

Chamber height 22.7 cm ‡ Very good 

Chamber base insertion 6 cm Very good 

Chamber deployment time 29 to 30 min Very good 

Number of gas samples 

Vent tube (length x diameter) 

Chamber net air volume 

6 

15 cm x 8 mm 

12 L 

Very good 

Very good 

-- 
† As described by Rochette and Eriksen-Hamel (2008). 

‡ Height includes the base (16 cm), metal ring beyond the base (5 cm), and the free cap space above the chamber (1.7 cm). 
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Figure A-1 Schematic diagram of the chamber design. 

Stainless steel ring 

12-in. PVC pipe base 

Plastic PVC pipe -Cap 

32.1 cm 

15 cm 

5 cm 

1.7 cm 

Base inner lip for adjustment 

of the metal ring 

29.9 cm 

5 cm 

1.1 cm 
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Figure A-2 Chamber construction: (a) 12-in. PVC pipe cutting process, (b) inner lip cutting, and             

(c) finished chamber. 
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Figure A-3 Static flux chamber in the field: (a) set up and (b) gas sampling. 
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 A.3. Preliminary Testing 

Six SFCs were randomly selected from a set of 10 SFCs for preliminary testing. For this 

purpose, the stainless steel metal ring (Fig. A-4a) was removed and replaced with a plastic cap, 

as shown in Figure A-4b. The dimensions of the SFC for computation of the internal volumes are 

shown in Figure A-5. The dimensions and internal air volumes of the six SFCs are summarized 

in Table A-3. 

 

Figure A-4 (a) Static flux chamber showing the stainless steel ring in the base and its cap and                  

(b) experimental set up for preliminary testing. 
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Figure A-5 Internal dimensions of the static flux chamber. 

 
 

Table A-3 Dimensions and volumes of the static flux chambers. 

 

Chamber 

Upper 

Diameter 

(cm) 

Bottom 

Diameter 

(cm) 

Total 

Height  

(cm) 

Lip Height 

(cm) 

Total Gas Volume 

(L) 

1 29.85 30.32 17.25 5.25 13.56 

2 29.85 30.32 17.20 4.75 13.52 

3 29.53 30.00 15.50 5.20 12.10 

4 29.53 30.00 15.30 5.20 11.97 

5 29.85 30.32 17.60 5.50 13.81 

6 29.53 30.00 17.70 5.00 13.61 

 

 

The sampling protocol involved sampling at 0, 5, 10, 15, and 30 min. Gas samples (20 

cc) were collected with 20-cc disposable plastic syringes with 25GX 1 1/2 in. needle and injected 

into previously flushed and evacuated 12-mL glass vials. Overpressure was intended to prevent 

sample contamination with atmospheric gases. As soon as each SFC was capped, within 1 min, 

the first gas sample (S0) was drawn from the chamber headspace and 120-cc of 3.5 ppm N2O 

standard gas was injected into each of the chambers. A second gas sample was collected (S5) 

from each SFC 5 min later and 120-cc of the N2O standard gas was again injected into the 

chambers. At time 10 min, a third gas sample was collected (S10) and a third 120-cc of the N2O 

standard was injected into the SFC. At time 15 min, the fourth gas sample was collected (S15); no 

N2O standard gas was injected. At time 30 min, the fifth gas sample (S30) was collected from the 

SFCs.  Because the vials containing the 30-min gas samples from three chambers lost their 

internal pressure, the 30-min samples were eliminated from the analysis. 

Gas samples were analyzed in the laboratory for N2O concentrations using a gas 

chromatograph (GC) (Model GC14A, Shimadzu, Kyoto, Japan). It was fitted with a Porapak-Q 
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(80/100 mesh) stainless steel column (0.318-cm dia. by 74.5 cm long) and an electron-capture 

detector (ECD).  The GC carrier gas was Ar/CH4 (95:5 ratio). The column (oven), injector, and 

detector (ECD) were set up at 85, 100, and 320°C respectively. Air temperature sensors were 

HOBO TMC6-HD sensors (-40 to 100 °C ± 0.25 °C, resolution 0.03°C) and were connected to a 

data logger (HOBO U12-008, Onset Computer Corp., Bourne, Mass.). 

For each sampling period, the theoretical (calculated) N2O concentration (ppm) in each 

SFC was computed based on the initial N2O concentration (S0) measured in each chamber with 

the GC, plus addition of the respective 120-cc of the N2O standard gas. Table A-4 summarizes 

the calculated and measured N2O concentration values. With the calculated value as reference, 

the average difference between measured and calculated N2O concentrations from the six SFCs 

was -2.7% with standard deviation of 6.8%. As sampling time increased, the difference between 

the calculated and measured N2O concentration values increased (Table A-4 and Fig. A-6). 

Paired t-test indicated no significant differences between the theoretical and measured 

N2O concentration values during the first 15-min of sampling. The gas recovery from the SFCs 

at sampling times 5 and 10 min was 99%, while at sampling time 15 min was 94% (Fig. A-7). 
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Table A-4 Calculated and measured N2O concentrations for each static flux chamber (SFC). 
 

 
† Measured with the gas chromatograph. 

1 13.6 23.4 0.35 † 120 8.50 - 0.35

Time: 0 min 2 13.5 23.4 0.35 † 120 8.47 - 0.35

N2O Injection: 1st 3 11.4 23.5 0.35 † 120 7.15 - 0.35

Sample: S0 4 12.0 23.4 0.35 † 120 7.50 - 0.35

5 13.8 23.1 0.35 † 120 8.67 - 0.35

6 13.6 23.1 0.35 † 120 8.53 - 0.35

1 13.6 23.4 0.35 120 9.77 0.40 0.42

Time: 5 min 2 13.5 23.4 0.35 120 9.74 0.40 0.40

N2O Injection: 2nd 3 11.4 23.4 0.35 120 8.43 0.41 0.37

Sample: S5 4 12.0 23.3 0.35 120 8.77 0.41 0.37

5 13.8 23.2 0.35 120 9.93 0.40 0.42

6 13.6 23.1 0.35 120 9.81 0.40 0.40

1 13.6 23.4 0.40 120 11.04 0.45 0.44

Time: 10 min 2 13.5 23.3 0.40 120 11.02 0.45 0.44

N2O Injection: 3rd 3 11.4 23.4 0.41 120 9.70 0.46 0.49

Sample: S10 4 12.0 23.3 0.41 120 10.05 0.46 0.40

5 13.8 23.3 0.40 120 11.21 0.45 0.45

6 13.6 23.3 0.40 120 11.08 0.45 0.49

1 13.6 23.4 0.45 0 12.32 0.50 0.45

Time: 15 min 2 13.5 23.4 0.45 0 12.29 0.50 0.44

N2O Injection: No 3 11.4 23.4 0.47 0 10.97 0.52 0.49

Sample: S15 4 12.0 23.4 0.46 0 11.32 0.52 0.47

5 13.8 23.5 0.45 0 12.48 0.50 0.49

6 13.6 23.4 0.45 0 12.35 0.50 0.52

Calculated N2O 

Concentration 

(ppm)

Time                   

N2O Injection   

Sample

Syringe N2O 

Volume (cc)

Measured N2O 

Concentration 

(ppm)

SFC 

#

Internal 

Volume 

(L)

Chamber Air 

Temperature 

(°C)

Initial N2O 

Concentration 

(ppm)

Total Chamber 

N2O Mass (µg)
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Figure A-6 Calculated and measured N2O concentrations for static flux chambers 1 - 6. 
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Figure A-7 Nitrous oxide recovery from the static flux chambers. 
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