• ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo Depositar?
  • Estadísticas
Repositorio Institucional
de la Universidad Tecnológica de Panamá
    • English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   UTP-Ridda2
  • Investigación
  • Ingeniería en computación e informática
  • Facultad de Ingeniería de Sistemas Computacionales
  • View Item
  •   UTP-Ridda2
  • Investigación
  • Ingeniería en computación e informática
  • Facultad de Ingeniería de Sistemas Computacionales
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-supervised 3D object recognition through CNN labeling

Thumbnail
Date
04/01/2018
04/01/2018
Author
Rangel, José Carlos
Martínez Gómez, Jesus
Romero González, Cristina
García Varea, Ismael
Cazorla, Miguel
Metadata
Show full item record
Abstract
Despite the outstanding results of Convolutional Neural Networks (CNNs) in object recognition and classification, there are still some open problems to address when applying these solutions to real-world problems. Specifically, CNNs struggle to generalize under challenging scenarios, like recognizing the variability and heterogeneity of the instances of elements belonging to the same category. Some of these difficulties are directly related to the input information, 2D-based methods still show a lack of robustness against strong lighting variations, for example. In this paper, we propose to merge techniques using both 2D and 3D information to overcome these problems. Specifically, we take advantage of the spatial information in the 3D data to segment objects in the image and build an object classifier, and the classification capabilities of CNNs to semi-supervisedly label each object image for training. As the experimental results demonstrate, our model can successfully generalize for categories with high intra-class variability and outperform the accuracy of a well-known CNN model.
URL
https://www.sciencedirect.com/science/article/abs/pii/S1568494618300553
URI
https://ridda2.utp.ac.pa/handle/123456789/9433
https://ridda2.utp.ac.pa/handle/123456789/9433
Collections
  • Facultad de Ingeniería de Sistemas Computacionales [191]
License
info:eu-repo/semantics/embargoedAccess

Related items

Showing items related by title, author, creator and subject.

  • Object recognition in noisy RGB-D data using GNG 

    Rangel, José Carlos; Morell, Vicente; Cazorla, Miguel; Orts-Escolano, Sergio; García-Rodríguez, José (Pattern Analysis and ApplicationsPattern Analysis and Applications, 04/26/2016)
    Object recognition in 3D scenes is a research field in which there is intense activity guided by the problems related to the use of 3D point clouds. Some of these problems are influenced by the presence of noise in the ...
  • Object Recognition in Noisy RGB-D Data 

    Rangel, José Carlos; Morell, Vicente; Cazorla, Miguel; Orts-Escolano, Sergio; García Rodríguez, José (01/01/2015)
    The object recognition task on 3D scenes is a growing research field that faces some problems relative to the use of 3D point clouds. In this work, we focus on dealing with noisy clouds through the use of the Growing Neural ...
  • An NFC approach for nursing care training 

    Fontecha, Jesus; Hervas, Ramon; Bravo, Jose; Villarreal, Vladimir (02/22/2011)
    Nowadays there is a need to improve the life quality of people in different social environments. One of the main fields to propose new improvements is healthcare. In this kind of scenario, health workers are doing a very ...

Browse

All of UTP-Ridda2Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

  • Enlaces de Interes

  • ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo depositar?
  • Sitios Recomendados

  • Revistas UTP
  • Sistema de Información Científica
  • Universidad Tecnológica de Panamá
  • Redes Sociales

  • facebook.com/UTPrepositorio
  • @utprepositorio

Recolectado por:

El OAI de este repositorio: http://ridda2.utp.ac.pa/oai/
Repositorio Institucional de Documentos Digitales de Acceso Abierto de la Universidad de Tecnológica de Panamá.
Este repositorio utiliza la Licencia CC BY-NC-SA y funciona bajo DSpace.

Contact Us | Send Feedback
Universidad Tecnológica de Panamá

  • Enlaces de Interes

  • ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo depositar?
  • Sitios Recomendados

  • Revistas UTP
  • Sistema de Información Científica
  • Universidad Tecnológica de Panamá
  • Redes Sociales

  • facebook.com/UTPrepositorio
  • @utprepositorio

Recolectado por:

El OAI de este repositorio: http://ridda2.utp.ac.pa/oai/
Repositorio Institucional de Documentos Digitales de Acceso Abierto de la Universidad de Tecnológica de Panamá.
Este repositorio utiliza la Licencia CC BY-NC-SA y funciona bajo DSpace.

Contact Us | Send Feedback
Universidad Tecnológica de Panamá